首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Load control and unsteady aerodynamics for floating wind turbines
【24h】

Load control and unsteady aerodynamics for floating wind turbines

机译:用于浮动风力涡轮机的负载控制和不稳定的空气动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Unlike fixed-base offshore wind turbine, the soft floating platform introduces 6 more degrees of freedom of motions to the floating offshore wind turbine. This may cause much more complex inflow environment to the wind turbine rotors compared with fixed-base wind turbine. The wind seen locally on the blade changes due to the motions of the floating wind turbine platform which has a direct impact on the aerodynamic condition on the blade such as the angle of attack and the inflow velocity. Such unsteady aerodynamic effects may lead to high fluctuation of the loads and power output. The present work aims to study the high unsteady aerodynamic performance of the floating wind turbine under platform surge motion. The unsteady aerodynamic loads are predicted with a lifting surface method with a free wake model. A preview predict control algorithm is used as the pitch control strategy. A full scale U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) 5 MW floating wind turbine is chosen as the subject of the present study. The unsteady aerodynamic performance and instabilities have been discussed in detail under prescribed platform surge motions with different control targets. Both minimizing the power output and rotor thrust fluctuation are set as the control objectives respectively. The theory analysis and the simulation results indicate that the blade pitch control can effectively alleviate the variation of the rotor thrust under platform surge motions. Larger amplitude of the variation of blade pitch is needed to alleviate the variation of the wind turbine power and this leads to high rotor thrust fluctuation. It is also shown that negative damping can be achieved during the blade pitch control process and may lead the floating platform wind turbine system into unstable condition.
机译:与固定底座海上风力涡轮机不同,软浮动平台向浮动近海风力涡轮机引入6种更多的运动自由度。与固定基础风力涡轮机相比,这可能导致风力涡轮机转子更复杂的流入环境。由于浮动风力涡轮机平台的运动而在叶片上局部地看到的风在诸如迎角和流入速度的叶片上的空气动力学条件上直接影响。这种不稳定的空气动力学效果可能导致负载和功率输出的高波动。本作工作旨在研究浮动风力涡轮机下平台浪涌运动的高不稳定空气动力学性能。使用具有自由唤醒模型的提升表面方法预测不稳定的空气动力载荷。预览预测控制算法用作音高控制策略。全方位的美国能源部全国可再生能源实验室(NREL)5 MW浮动风力涡轮机被选为本研究的主题。在具有不同控制目标的规定平台浪涌运动下,已经详细讨论了不稳定的空气动力学性能和不稳定性。最小化功率输出和转子推力波动分别被设定为控制目标。理论分析和仿真结果表明,叶片间距控制可以有效地减轻平台浪涌运动下转子推力的变化。需要较大的刀片间距变化幅度以减轻风力涡轮机动力的变化,并且这导致高转子推力波动。还示出了在刀片间距控制过程中可以实现负阻尼,并且可以将浮动平台风力涡轮机系统引入不稳定状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号