首页> 外文期刊>Planetary and space science >Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station
【24h】

Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station

机译:微重力和低重力空间农业:地球,火星,月球和空间站上一个耕作单元中土壤水力学和生物地球化学的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

Increasing interest is developing towards soil-based agriculture as a long-term bioregenerative life support during space and planetary explorations. Contrary to hydroponics and aeroponics, soil-based cropping would offer an effective approach to sustain food and oxygen production, decompose organic wastes, sequester carbon dioxide, and filter water. However, the hydraulics and biogeochemical functioning of soil systems exposed to gravities lower than the Earth's are still unknown. Since gravity is crucial in driving water flow, hypogravity will affect nutrient and oxygen transport in the liquid and gaseous phases, and could lead to suffocation of microorganisms and roots, and emissions of toxic gases. A highly mechanistic model coupling soil hydraulics and nutrient biogeochemistry previously tested on soils on Earth (g=9.806 m s~(-2)) is used to highlight the effects of gravity on the functioning of cropping units on Mars (0.38 g), the Moon (0.16 g), and in the international space station (ISS, nearly 0 g). For each scenario, we have compared the net leaching of water, the leaching of NH_3, NH_4~+, NO_2~- and NO_3~- solutes, the emissions of NH_3, CO_2, N_2O, NO and N_2 gases, the concentrations profiles of O_2, CO_2 and dissolved organic carbon (DOC) in soil, the pH, and the dynamics of various microbial functional groups within the root zone against the same control variables in the soil under terrestrial gravity. The response of the soil ecodynamics was relatively linear; gravitational accelerations lower than the Earth's resulted in 90-100% lower water leaching rates, 95-100% lower nutrient leaching rates, and lower emissions of NH_3 and NO gases (80-95% and 30-40%, respectively). Lower N loss through leaching resulted in 60-100% higher concentration of the microbial biomass, but did not alter the vertical stratification of the microbial functional groups with respect to the stratification on Earth. However, the higher biomass concentration produced higher emissions of N_2O, N_2, and CO_2 gases (80%, 200% and 40%, respectively).
机译:作为太空和行星探索期间的长期生物再生生命支持,对土壤农业的兴趣正日益增长。与水培法和航空植物学相反,以土壤为基础的种植将提供一种有效的方法来维持食物和氧气的产生,分解有机废物,隔离二氧化碳和过滤水。但是,人们仍然不知道土壤系统的水力学和生物地球化学功能受到比地球低的重力作用。由于重力在驱动水流中至关重要,因此重力过低将影响液相和气相中的养分和氧气输送,并可能导致微生物和根的窒息并释放有毒气体。利用高力学模型将先前在地球土壤上测试过的土壤水力学和营养生物地球化学相结合(g = 9.806 ms〜(-2)),以突出重力对火星(0.38 g),月球上耕作单元功能的影响(0.16 g),并在国际空间站(ISS,接近0 g)。对于每种情况,我们都比较了水的净浸出,NH_3,NH_4〜+,NO_2〜-和NO_3〜-溶质的浸出,NH_3,CO_2,N_2O,NO和N_2气体的排放,O_2的浓度曲线,土壤中的CO_2和溶解有机碳(DOC),pH值以及根区内土壤微生物在相同重力下对相同控制变量的动态变化。土壤生态动力学的响应是相对线性的。低于地球的重力加速度导致水浸出率降低90-100%,营养素浸出率降低95-100%,并降低NH_3和NO气体的排放(分别为80-95%和30-40%)。通过浸出降低的氮损失导致微生物生物质浓度提高60-100%,但相对于地球上的分层而言,并未改变微生物功能基团的垂直分层。但是,较高的生物质浓度会产生较高的N_2O,N_2和CO_2气体排放(分别为80%,200%和40%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号