...
首页> 外文期刊>Physical review.B.Condensed matter and materials physics >Giant tunneling magnetoresistance in van der Waals magnetic tunnel junctions formed by interlayer antiferromagnetic bilayer CoBr_2
【24h】

Giant tunneling magnetoresistance in van der Waals magnetic tunnel junctions formed by interlayer antiferromagnetic bilayer CoBr_2

机译:van der Wa磁隧道结的巨型隧道磁阻由中间层反铁磁性双层COBR_2形成

获取原文
获取原文并翻译 | 示例
           

摘要

The discovery of two-dimensional (2D) van der Waals (vdW) intrinsic magnets has opened a promising avenue to design high-performance magnetic tunnel junctions (MTJs) based on 2D materials. In this work, using first-principles calculations, it is demonstrated that bilayer CoBr_2 is intrinsically a magnetic semiconductor with intralayer ferromagnetic (FM) and interlayer antiferromagnetic (AFM) couplings and the interlayer AFM coupling in bilayer CoBr_2 is independent on the stacking orders. Moreover, using the nonequilibrium Green's function combined with density functional theory, it is found that due to the large difference between interlayer AFM and FM states of the CoBr_2 barrier, the conductance of spin fliter (SF) vdW MTJs based on the graphene/bilayer CoBr_2/graphene heterostructure for the interlayer FM slate of the CoBr_2 barrier is about 25 times that for the interlayer AFM state of the CoBr_2 barrier. Consequently, a high tunneling magnetoresistance (TMR) ratio of 2420% is achieved in this SF-vdW MTJ at zero bias. In particular, because the current for the interlayer FM state of the CoBr_2 barrier rapidly increases with the increase of bias voltage, a giant TMR ratio of up to about 38 000% can be achieved in this SF-vdW MTJ at 0.2-V bias. Our results suggest that SF-vdW MTJs formed by the interlayer AFM barrier with variable conductivity hold great potential for developing vdW MTJs with a high TMR ratio.
机译:二维(2D)范德瓦尔斯(VDW)内在磁铁的发现开设了一个有希望的大道,以基于2D材料设计高性能磁隧道连接(MTJ)。在这项工作中,使用第一原理计算,证明双层COBR_2是具有腔内铁磁性(FM)的磁性半导体,层间反铁磁(AFM)耦合,并且双层COBR_2中的层间AFM耦合是独立于堆叠顺序的。此外,使用非QuiLibium的功能与密度功能理论相结合,发现由于中间层AFM和COBR_2屏障的FM状态之间的差异很大,基于石墨烯/双层COBR_2的自旋液(SF)VDW MTJ的电导/石墨烯异质结构的COBR_2屏障的中间形式FM板岩是COBR_2屏障的中间层AFM状态的约25倍。因此,在该SF-VDW MTJ下实现高隧道磁阻(TMR)比率为2420%,处于零偏置。特别地,由于COBR_2屏障的中间层FM状态的电流随着偏置电压的增加而迅速增加,所以在该SF-VDW MTJ下,在0.2-V偏压下可以实现高达约38000%的巨大TMR比率。我们的研究结果表明,具有可变电导率的中间层AFM屏障形成的SF-VDW MTJS具有高TMR比率的VDW MTJS的巨大潜力。

著录项

  • 来源
    《Physical review.B.Condensed matter and materials physics》 |2021年第13期|134437.1-134437.8|共8页
  • 作者单位

    Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education) Department of Physics Jilin University Changchun 130012 China Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China;

    Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education) Department of Physics Jilin University Changchun 130012 China;

    Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China Beijing National Laboratory for Condensed Matter Physics Institute of Physics University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China;

    Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China Beijing National Laboratory for Condensed Matter Physics Institute of Physics University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China;

    Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education) Department of Physics Jilin University Changchun 130012 China;

    Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China Beijing National Laboratory for Condensed Matter Physics Institute of Physics University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号