首页> 外文期刊>Physical review >Rheology Of Liquid Fcc Metals: Equilibrium And Transient-time Correlation-function Nonequilibriummolecular Dynamics Simulations
【24h】

Rheology Of Liquid Fcc Metals: Equilibrium And Transient-time Correlation-function Nonequilibriummolecular Dynamics Simulations

机译:液态Fcc金属的流变学:平衡和瞬态时间相关函数非平衡分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Using classical molecular dynamics simulation together with the quantum-corrected Sutton-Chen many-body embedded-atom model, we study the rheology of several liquid fcc metals (Pb, Pt, Ir, Ag, and Rh) at ambient pressure and at four temperatures ranging from 5% below the melting temperature to 75% above the melting temperature. We first carry out equilibrium molecular dynamics simulations and determine, using Green-Kubo's formalism, the shear viscosity η_(GK), the shear modulus G_x, and the Maxwell relaxation time τ_M. By scaling the shear stress autocorrelation function or, equivalently, the time-dependent viscosity η(t) by η_(GK) and the time t by τ_M, we show that the scaled time-dependent viscosity for all metals collapses onto the same curve. This demonstrates that the relaxation behavior is the same for all metals studied here. We then apply transient-time correlation-function nonequilibrium molecular dynamics simulations to determine the response of liquid metals subjected to shear rates ranging from 10 s~(-1) to 5 × 10~(12) s~(-1). We show that for all metals, the shear rate-dependent viscosity η(γ) (scaled by η_(GK)) as a function of the applied shear rate γ (scaled by the inverse of τ_M) collapses onto the same curve. We obtain the same result for the shear rate-dependent pressure P(γ) (scaled by G_∞) and for the potential energy (scaled by its equilibrium value). Fits to power-law expressions show that η(γ) follows the prediction of mode-coupling theory and that nonanalytic exponents are found for the shear rate dependence of pressure and potential energy.
机译:使用经典的分子动力学模拟以及经量子校正的Sutton-Chen多体嵌入原子模型,我们研究了几种液态fcc金属(Pb,Pt,Ir,Ag和Rh)在环境压力和四种温度下的流变学从低于熔融温度的5%到高于熔融温度的75%的范围内。我们首先进行平衡分子动力学模拟,并使用Green-Kubo的形式主义确定剪切粘度η_(GK),剪切模量G_x和麦克斯韦弛豫时间τ_M。通过按比例缩放剪应力自相关函数,或等效地,将随时间变化的黏度η(t)乘以η_(GK),将时间t改变为τ_M,我们证明所有金属的按比例缩放的随时间变化的黏度都塌陷在同一条曲线上。这表明此处研究的所有金属的弛豫行为都是相同的。然后我们应用瞬态时间相关函数非平衡分子动力学模拟来确定液态金属在10 s〜(-1)到5×10〜(12)s〜(-1)剪切速率下的响应。我们发现,对于所有金属,剪切速率相关的粘度η(γ)(由η_(GK)缩放)与所施加的剪切速率γ(由τ_M的反比例缩放)有关。对于与剪切速率有关的压力P(γ)(由G_∞缩放)和势能(由其平衡值缩放),我们获得相同的结果。拟合幂律表达式表明,η(γ)遵循模式耦合理论的预测,并且发现了压力和势能的剪切速率相关性的非解析指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号