...
首页> 外文期刊>Physical review >New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene
【24h】

New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene

机译:石墨烯基有机半导体的新家族:半氟化石墨烯中光子诱导的电子结构操纵的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of ~5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half -fluorinated carbon on Sic(0001), i.e., the (63~(1/2) × 63~(1/2)) R30℃/SiC "buffer layer," graphene on this (63~(1/2) × 63~(1/2)) R30℃/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (~2.5-eV band gap) and metallic regions, respectively.
机译:石墨烯在电子和光电子器件中的应用受到该材料缺乏可靠的半导体变体的限制。在这方面,最有希望的候选材料是氧化石墨烯,其带隙约为5 eV,但是,在费米能级具有有限的态密度。在这里,我们研究了Sic(0001)上三种半氟化碳变体的电子结构,即(63〜(1/2)×63〜(1/2))R30℃/ SiC“缓冲层”,石墨烯在此(63〜(1/2)×63〜(1/2))R30℃/ SiC缓冲层上,并且石墨烯通过氢嵌入与SiC衬底解耦。使用角度分辨光发射,核心能级光发射和x射线吸收,我们显示了所有三个变体的电子,化学和物理结构非常相似,在费米能级上显示出较大的带隙和消失的态密度。这些结果是根据第一性原理计算来解释的。由于这种材料是在易于加工的基材上制备的,因此显得非常适合于应用。我们还研究了两个单独的紫外线光子诱导的电子结构修饰,它们分别将绝缘样品(6.2 eV带隙)转变为半导体(〜2.5 eV带隙)和金属区域。

著录项

  • 来源
    《Physical review》 |2016年第7期|075439.1-075439.11|共11页
  • 作者单位

    Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA,Department of Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany,Donostia International Physics Centre, Paseo Manuel de Lardizabal, 4. 20018 Donostia-San Sebastian, Spain;

    Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium,Brookhaven National Laboratory, National Synchrotron Light Source Ⅱ, Upton, New York, 11973;

    Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium;

    School of Electrical Engineering, University of Ulsan, Namgu, Ulsan, 680-749, South Korea;

    Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium;

    Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

    Department of Physics, University of Seoul, Seoul, 130-743, Korea;

    Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium;

    Department of Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany;

    Advanced Light Source (ALS), E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号