...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network
【24h】

Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

机译:在声波导网络中受拓扑保护的有效声音传播的实验演示

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.
机译:声学拓扑状态支持声音沿边界沿单向传播,并具有固有的抵抗缺陷和混乱的能力,从而导致了对声波操纵的革命。理论上已经提出了依赖于循环流体,手性耦合或时间调制的多种声学拓扑状态。但是,由于诸如结构复杂性和高损耗之类的关键限制,到目前为止,实验演示仍然是一项重大挑战。在这里,我们通过实验证明了波导网络中的声学异常Floquet拓扑绝缘体。当波导牢固耦合时,可以在带隙中找到无声隙边缘状态。该方案具有简单的结构和高能量的吞吐量,从而导致了沿边界有效且鲁棒的拓扑保护声音传播的实验演示。该提议可以为声学装置的声学引导,切换,隔离,滤波等设计提供独特而有希望的应用。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第9期|094305.1-094305.9|共9页
  • 作者单位

    Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

    Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China ,State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China ,State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号