...
首页> 外文期刊>Permafrost and Periglacial Processes >Report from the International Permafrost Association: State of Permafrost in the First Decade of the 21st Century
【24h】

Report from the International Permafrost Association: State of Permafrost in the First Decade of the 21st Century

机译:国际多年冻土协会的报告:21世纪前十年的多年冻土状况

获取原文
获取原文并翻译 | 示例
           

摘要

Very similar permafrost temperature dynamics have been observed in Alaska, northwest Canada, the European north of Russia and northwest Siberia during the last 20 to 30 years (Figure 1A-D). The general trend is a substantial increase in permafrost temperatures in the 1990s compared to the 1970s or the beginning of the mid-1980s. Most sites show almost no trend during the first decade of the 21st century (late 1990s for the Russian sites) but at several, there is an indication of a slight increase in permafrost temperatures during the last one or two years. Not all permafrost observatories show warming trends over the past 20 years. The data from interior Alaska (Figure 1A), northwest Canada (Figure 1B), northwest Siberia (Figure 1C) and central Asia (Figure 1F) show that the rate of warming decreases significantly when permafrost temperatures approach 0℃. At many sites this increase ceases completely when temperatures are within a few tenths of a degree of 0℃. Good examples of this are the Livengood and Gulkana sites in Alaska (Figure 1A) and several sites in Canada (Figure 1B) and western Siberia (Figure 1C). All these sites are in fine-grained, ice-rich sediments that can hold significant amounts of unfrozen water at temperatures close to but below 0℃. It was suggested earlier (Smith et al., 2005; Romanovsky et al., 2007, 2008b) that partial melt of ice within the upper few tens of metres of permafrost is responsible for the apparent stagnation of permafrost temperatures. During this transition period of 'internal' thawing of permafrost, temperature may not be the best indicator of changes in permafrost. Measuring the unfrozen water content in the upper permafrost may provide a better understanding of changes that are occurring in this near-isothermal permafrost.
机译:在过去20到30年中,在阿拉斯加,加拿大西北部,俄罗斯北部的欧洲和西伯利亚西北部观察到了非常相似的多年冻土温度动态(图1A-D)。总的趋势是,与1970年代或1980年代中期开始相比,1990年代的多年冻土温度大幅上升。在21世纪的前十年中,大多数站点几乎没有趋势(俄罗斯站点在1990年代后期),但是在过去的一两年中,有几次表明多年冻土温度略有上升。在过去的20年中,并非所有的多年冻土观测站都显示出变暖的趋势。来自阿拉斯加内部(图1A),加拿大西北部(图1B),西伯利亚西北部(图1C)和中亚(图1F)的数据表明,当永久冻土温度接近0℃时,升温速率显着下降。在许多地方,当温度在0℃的十分之一以内时,这种增加就完全停止了。很好的例子是阿拉斯加的利文古德和古尔卡纳遗址(图1A)以及加拿大的几个遗址(图1B)和西伯利亚西部(图1C)。所有这些地点都在细颗粒,富含冰的沉积物中,在接近但低于0℃的温度下,它们可以容纳大量未冻结的水。早些时候有人提出(Smith等人,2005; Romanovsky等人,2007,2008b),永久冻土上部几十米内的部分冰融化是造成永久冻土温度明显停滞的原因。在多年冻土“内部”解冻的过渡期内,温度可能不是永久冻土变化的最佳指示。测量上层永久冻土中的未冻结水含量可以更好地了解这种接近等温的永久冻土中发生的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号