...
首页> 外文期刊>Organic Electronics >Incorporation of silver and gold nanostructures for performance improvement in P3HT: PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer
【24h】

Incorporation of silver and gold nanostructures for performance improvement in P3HT: PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer

机译:引入银和金纳米结构以提高P3HT的性能:带有rGO / ZnO纳米复合材料作为电子传输层的PCB​​M倒置太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

Inefficient light absorption and inefficient charge separation are considered as two major impediments for the efficiency improvement in bulk heterojunction organic solar cells (BHJ OSCs). In this work, we report the simultaneous role of modified electron transport layer (ETL) and photoactive layers on the performance of poly (3-hexylthiophene), [6, 6]-phenyl C61 -butyric acid methyl ester (P3HT: PCBM) BHJ OSCs. To modify the ETL, composite of reduced graphene oxide (rGO) (0.4 wt %) and ZnO nanoparticles (NPs) was used, which resulted in efficiency enhancement from 3.13 to 3.81 %, as compared to a value of 3.13% when only ZnO was used. Thereafter, to improve upon the optical absorption properties, the photoactive layer is modified by embedding nanoparticles and nanorods of Ag and Au into it The size of Ag and Au nanoparticles were chosen to be 50 nm while the dimensions of Ag and Au nanorods were so controlled to obtain length of approx. 50 nm and width of -10 nm. All the devices were fabricated in inverted geometry and 20 wt% nanostructures embedded devices showed the best results. For Ag and Au NPs embedded devices, the maximum power conversion efficiency was found to be 4.21% and 4.44%, respectively. On the other hand, for Ag and Au NRs embedded devices, the maximum efficiency was 4.37% and 4.85%, respectively. For comparison, the control devices where no nanostructures were embedded, which shows efficiency of 3.81%. Therefore, an overall enhancement in efficiency was nearly 1.21 and 1.1, 1.16, 1.14, 1.27 fold after modifying ETL as well as the active layer. The reasons for performance improvement were ascribed to better charge extraction properties of ETL, enhanced light absorption due to localized surface plasmon resonance (LSPR) and efficient light scattering by the nanostructures and improved global mobilities.
机译:低效率的光吸收和低效率的电荷分离被认为是大体积异质结有机太阳能电池(BHJ OSC)效率提高的两个主要障碍。在这项工作中,我们报告了改性电子传输层(ETL)和光敏层在聚(3-己基噻吩),[6,6]-苯基C61-丁酸甲酯(P3HT:PCBM)BHJ的性能上的同时作用。 OSC。为了修改ETL,使用了还原型氧化石墨烯(rGO)(0.4 wt%)和ZnO纳米颗粒(NPs)的复合材料,效率从3.13%提高到3.81%,而只有ZnO时为3.13%用过的。此后,为了改善光吸收性能,通过将Ag和Au的纳米颗粒和纳米棒嵌入其中来修饰光敏层。选择Ag和Au纳米棒的尺寸为50 nm,同时控制Ag和Au纳米棒的尺寸获得大约长度50 nm和-10 nm的宽度。所有器件均以倒置的几何形状制造,而20 wt%纳米结构的嵌入式器件显示出最佳效果。对于Ag和Au NPs嵌入式设备,发现最大功率转换效率分别为4.21%和4.44%。另一方面,对于Ag和Au NRs嵌入式设备,最大效率分别为4.37%和4.85%。为了进行比较,没有嵌入纳米结构的控制装置的效率为3.81%。因此,在修改ETL以及有源层之后,效率的总体提高接近1.21倍和1.1、1.16、1.14、1.27倍。性能改善的原因归因于ETL更好的电荷提取性能,由于局部表面等离子体共振(LSPR)而增强的光吸收以及纳米结构的有效光散射和提高的整体迁移率。

著录项

  • 来源
    《Organic Electronics》 |2016年第2期|79-87|共9页
  • 作者单位

    Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India;

    Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India;

    Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India;

    Department of Electrical & Electronics Engineering, BITS-Pilani (Hyderabad Campus), Hyderabad, Telangana, 500078, India;

    Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Organic solar cell; Ag Au nanostructures; UV-Vis absorption; P3HT:PCBM; LSPR; Mie scattering;

    机译:有机太阳能电池;Ag和Au纳米结构;紫外线吸收P3HT:PCBM;LSPR;三重散射;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号