首页> 外文期刊>Optical fiber technology >Experimental study on distributed optical-fiber cable for high-pressure buried natural gas pipeline leakage monitoring
【24h】

Experimental study on distributed optical-fiber cable for high-pressure buried natural gas pipeline leakage monitoring

机译:分布式光纤电缆用于高压地下天然气管道泄漏监测的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

At present, fiber-optic cable monitoring technology uses an fiber-optic cable located at 300 mm above a buried natural gas pipeline to collect gas leakage information. However, the change in soil temperature caused by natural gas leakage is not tested and verified. This prevents the installment of an fiber-optic cable for monitoring gas leakage in the field. To improve the sensitivity of fiber-optic cable leakage monitoring and reduce the failure rate, the laying mode of fiber-optic cable should be verified and analyzed. In this study, Peng-Robinson (PR) real gas state equation, a Raman optical time-domain reflectometer (ROTDR), and finite element method (FEM) were combined to simulate the gas leakage of buried pipelines. The trend of soil temperature around the leak hole and laying mode of fiber-optic cable was studied. It can be concluded that the higher the pressure of pipeline and leakage hole, the greater the temperature change at 100 mm directly above the pipeline. On this basis, a field test was carried out to study the leakage of a buried high-pressure natural gas pipeline. The experimental results show that the gas leakage can be detected by an fiber-optic cable located at 100 mm above the pipeline, and it is difficult to detect the change in soil temperature when the fiber-optic cable is located 200 mm or farther. The experimental results are consistent with the simulation results. This indicates that the simulation method is correct and feasible. Thus, the fiber-optic cable needs to be placed 100 mm or closer to the buried pipeline to monitor the temperature change. The result of the test and the simulation result are coincident approximately. The conclusion is: evenly lay 4 optical cables within 100 mm around the pipe, and each cable can monitor the temperature change in the 90 degrees range above the leakage hole. This method can accurately monitor the leakage of the whole pipe section. The study results can guide the laying plan of fiber-optic cables and construction of natural gas pipelines and prevent accidents.
机译:目前,光缆监控技术使用位于地下天然气管道上方300毫米的光缆来收集气体泄漏信息。但是,天然气泄漏引起的土壤温度变化未经测试和验证。这阻止了安装用于监测现场气体泄漏的光缆。为了提高光缆泄漏监测的灵敏度,降低故障率,必须对光缆的敷设方式进行验证和分析。在这项研究中,结合了Peng-Robinson(PR)的实际气体状态方程,拉曼光学时域反射仪(ROTDR)和有限元方法(FEM)来模拟地下管道的气体泄漏。研究了泄漏孔周围土壤温度的变化趋势以及光缆的敷设方式。可以得出结论,管道和泄漏孔的压力越高,管道正上方100 mm处的温度变化越大。在此基础上,进行了现场测试,以研究地下高压天然气管道的泄漏情况。实验结果表明,气体泄漏可以通过位于管道上方100 mm的光缆来检测,并且当光缆位于200 mm或更远的地方时,很难检测到土壤温度的变化。实验结果与仿真结果吻合。这表明该仿真方法是正确可行的。因此,需要将光缆放置在距地下管线100 mm或更近的位置,以监控温度变化。测试结果与模拟结果大致重合。结论是:在管道周围100毫米内均匀地铺设4条光缆,每条光缆可以监控泄漏孔上方90度范围内的温度变化。这种方法可以准确地监控整个管段的泄漏。研究结果可指导光缆敷设方案和天然气管道建设,防止事故发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号