首页> 外文期刊>Ocean Engineering >Numerical investigation of marine propeller underwater radiated noise using acoustic analogy Part 2: The influence of eddy viscosity turbulence models
【24h】

Numerical investigation of marine propeller underwater radiated noise using acoustic analogy Part 2: The influence of eddy viscosity turbulence models

机译:船舶螺旋桨水下辐射噪声的数值研究使用声学模拟第2部分:涡粘度湍流模型的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The present study focuses on the impact of eddy viscosity turbulence models on the benchmark INSEAN E779A marine propeller hydmacoustic performance under non-cavitating and open water conditions. In the numerical calculations, Realisable k-epsilon (k-epsilon), k-omega Shear Stress Transport (k-omega SST) and Spalart-Allmaras turbulence models, which are widely used in hydrodynamic fields, are selected. Hydroacoustic performance of the model propeller is predicted with the porous FW-H formulation coupled with Reynolds-averaged Navier Stokes (RANS) solver. This study aims to show the effects of different turbulence models on marine propeller hydmacoustic performance at high and low blade loading conditions both in the near and far-fields. The numerical results show that the underwater radiated noise (URN) levels, which are predicted by using different eddy viscosity turbulence models together with the porous FW-H formulation, are found to be similar at low blade loading conditions. The reason behind this similarity is due to the analogous wake structure and hydrodynamic field. However, when the propeller loading is high, the propeller's wake loses its stability; hence, the coherent vortex structures break-up and evolve into the far-field of the propeller's slipstream. The instability process of the propeller's wake is predicted in a different manner by eddy viscosity turbulence models, and these differences cause dissimilar prediction of the URN in the far-field. Consequently, the underwater pressure field is considerably affected by the instability of the vortex structures (as a non-linear noise source) for far-field noise estimations. As a result, vortex instability in the propeller's slipstream might be the main noise source of the URN for far-field noise estimations under non-cavitating and high blade loading conditions.
机译:本研究侧重于涡粘度湍流模型对非空化和开放水条件下基准抗粘度湍流模型对基准的兴奋型E779A船舶螺旋桨潮流性能的影响。在数值计算中,选择可实现的K-EPSILON(K-EPSILON),K-OMEGA剪切应力传输(K-OMEGA SST)和SPALART-ALLMARAS湍流模型,其广泛用于流体动力场。模型螺旋桨的水声性能预测着与雷诺平均的Navier Stokes(RANS)求解器相连的多孔FW-H配方预测。本研究旨在展示不同湍流模型对近乎和远场的高低叶片装载条件下的海洋螺旋桨潮声性能的影响。数值结果表明,通过使用不同的涡粘度湍流模型与多孔FW-H配方一起预测的水下辐射噪声(URN)水平在低叶片负载条件下类似地预测。这种相似性的原因是由于类似的唤醒结构和流体动力场。然而,当螺旋桨负载高时,螺旋桨的唤醒失去了其稳定性;因此,连贯的涡旋结构分手并进化到螺旋桨滑翔的远场。通过涡流湍流模型以不同的方式预测螺旋桨尾巴的不稳定性过程,这些差异导致远场中的URN的不相似预测。因此,水下压力场受到远场噪声估计的涡流结构(作为非线性噪声源)的不稳定性的影响。结果,螺旋桨滑流中的涡流不稳定可能是在非空化和高叶片装载条件下的远场噪声估计的URN的主要噪声源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号