首页> 外文期刊>Nuclear Technology >THE COUPLING OF A DETERMINISTIC TRANSPORT FIELD SOLUTION TO A MONTE CARLO BOUNDARY CONDITION FOR THE SIMULATION OF LARGE GAMMA-RAY SPECTROMETERS
【24h】

THE COUPLING OF A DETERMINISTIC TRANSPORT FIELD SOLUTION TO A MONTE CARLO BOUNDARY CONDITION FOR THE SIMULATION OF LARGE GAMMA-RAY SPECTROMETERS

机译:确定性传输场解与蒙特卡罗边界条件的耦合,用于模拟大型伽玛射线谱仪

获取原文
获取原文并翻译 | 示例
           

摘要

Monte Carlo methods are typically used for simulating radiation fields around gamma-ray spectrometers and pulse-height tallies within those spectrometers. Deterministic codes that discretize the linear Boltzmann transport equation can offer significant advantages in computational efficiency for calculating radiation fields, but stochastic codes remain the most dependable tools for calculating the response within spectrometers. For a deterministic field solution to become useful to radiation detection analysts, it must be coupled to a method for calculating spectrometer response functions. This coupling is done in the RADSAT toolbox.rnPrevious work has been successful using a Monte Carlo boundary sphere around a handheld detector. It is desirable to extend this coupling to larger detector systems such as the portal monitors now being used to screen vehicles crossing borders. Challenges to providing anrnaccurate Monte Carlo boundary condition from the deterministic field solution include the greater possibility of large radiation gradients along the detector and the detector itself perturbing the field solution, unlike smaller detector systems. The method of coupling the deterministic results to a stochastic code for large detector systems can be described as spatially defined rectangular patches that minimize gradients.rnThe coupled method was compared to purely stochastic simulation data of identical problems, showing the methods produce consistent detector responses while the purely stochastic run times are substantially longer in some cases, such as highly shielded geometries. For certain cases, this method has the ability to faithfully emulate large sensors in a more reasonable amount of time than other methods.
机译:蒙特卡罗方法通常用于模拟伽马射线光谱仪周围的辐射场以及这些光谱仪内的脉冲高度计。离散化线性玻耳兹曼输运方程的确定性代码可以在计算辐射场的计算效率方面提供显着的优势,但是随机代码仍然是计算光谱仪内响应的最可靠工具。为了使确定性现场解决方案对辐射检测分析人员有用,必须将其与计算光谱仪响应函数的方法相结合。这种耦合是在RADSAT工具箱中完成的。rn以前的工作已经成功地使用了手持探测器周围的蒙特卡洛边界球。期望将这种耦合扩展到更大的检测器系统,例如现在用于对越界车辆进行筛查的门禁监控器。从确定性场解中提供错误的蒙特卡洛边界条件的挑战包括沿着探测器的较大辐射梯度的更大可能性以及探测器本身会干扰场解,这与较小的探测器系统不同。将确定性结果与大型探测器系统的随机代码耦合的方法可以描述为最小化梯度的空间定义的矩形补丁。rn将该耦合方法与相同问题的纯随机模拟数据进行了比较,表明该方法产生一致的探测器响应,而在某些情况下,例如高度屏蔽的几何形状,纯随机运行时间会更长。在某些情况下,与其他方法相比,该方法能够在更合理的时间内忠实地仿真大型传感器。

著录项

  • 来源
    《Nuclear Technology》 |2009年第1期|95-100|共6页
  • 作者单位

    Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999, Richland, Washington 99352;

    Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999, Richland, Washington 99352;

    Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999, Richland, Washington 99352;

    Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999, Richland, Washington 99352;

    Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999, Richland, Washington 99352;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Monte Carlo; deterministic transport; simulation;

    机译:蒙特卡洛;确定性运输;模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号