首页> 外文期刊>Nuclear Technology >Investigations on Detecting Potential Nuclear Material Diversion from a Pyroprocessing Facility
【24h】

Investigations on Detecting Potential Nuclear Material Diversion from a Pyroprocessing Facility

机译:从高温处理设施中发现潜在核材料转移的研究

获取原文
获取原文并翻译 | 示例
       

摘要

Under normal operating conditions, a pyroprocessing facility removes highly radioactive and nonradioactive fission product waste from used nuclear reactor fuel to recycle the remaining uranium (U), plutonium (Pu), and other actinides contained in it. The products from this facility are separate ingots of U and mixed transuranic elements (TRUs)-uranium (TRU-U). Uranium in both ingots will be depleted U with U-235 enrichment less than 1%. The TRU-U ingot will contain neptunium, Pu, americium (Am), and curium (Cm) mixed with U with an approximate TRU:U ratio of 1:1. Four scenarios of nuclear material diversion by potential misuse of the pyroprocessing facility operations are analyzed and compared with the scenario of normal operating condition when the electrowinning process or the TRU-U ingot manufacturing process is misused. These diversion scenario analyses are carried out to understand the proliferation potential and to recommend safeguards measures. The four scenarios of nuclear material diversion analyzed are (1) 50 g Pu, (2) 100 g Pu, (3) 200 g Pu, and (4) all Pu, i.e., 452 gin the 1-kg TRU-U ingot. Plutonium cannot be diverted by itself because other TRUs (Am and Cm) will be simultaneously extracted with Pu. This is because the reduction potentials of those actinides are not distinguishably different from that of Pu on a liquid cadmium cathode of the electrowinning step of the pyroprocess. Hence, in addition to Pu, simultaneous diversion of respective amounts of Am and Cm for the four diversion scenarios are considered. The diversion scenario analysis also considered the concealment of Pu and Cm removal from the TRU-U ingot by adding an equivalent amount of Cf-252 to replenish the neutron source emissions. These five scenarios (four nuclear material diversion scenarios and one normal operation scenario) are modeled and simulated using the Monte Carlo N-Particle (MCNP6) radiation transport computer code by incorporating the model of a NaI gamma radiation detection system. The results show that the presence and absence of Pu in the TRU-U ingot can be confirmed by the NaI gamma radiation detection system. However, identifying the presence of U in the TRU-U ingot is difficult using the NaI gamma radiation detection system due to interference from TRU gamma radiation. To identify the U presence in the TRU-U ingot, an application of nuclear magnetic resonance (NMR) is studied. The NMR technology employs a numerical calculation approach based on density functional theory (DFT) simulation. The DFT calculation results show that the detection of U in a pyroprocess is feasible by NMR technology. In addition, these four nuclear material diversion scenarios are analyzed through MCNP6 simulations by incorporating the model of a coincidence neutron detection system. To conceal the nuclear material diversion, the simulations are performed by replacing the diverted Pu and Cm by an appropriate mass of Cf-252 neutron source that is equivalent to the neutron source strengths of the diverted mass. Simulation results show that this concealment (misuse) results in a deceived Pu mass estimate in the TRU-U ingot if the Pu-to-Cm-244-ratio method (proposed method in the literature) is used.
机译:在正常运行条件下,热解设施会从用过的核反应堆燃料中去除高放射性和非放射性裂变产物废物,以回收其中所含的剩余铀(U),p(Pu)和其他act系元素。该工厂的产品是铀和混合的超铀元素(TRUs)-铀(TRU-U)的独立铸锭。两个钢锭中的铀都将通过U-235富集小于1%的方式消耗掉。 TRU-U铸锭将包含n,Pu,a(Am)和cur(Cm)与U混合,其TRU:U比率约为1:1。分析了四种因高温处理设施运行的潜在滥用而导致核材料转移的情况,并将其与滥用电解沉积工艺或TRU-U锭制造工艺时的正常运行条件进行了比较。进行这些转移情景分析是为了了解扩散潜力并提出保障措施。分析的四种核材料转移情景是(1)50 g Pu,(2)100 g Pu,(3)200 g Pu和(4)所有Pu,即452轧制1-kg TRU-U铸锭。 cannot本身不能转移,因为其他TRU(Am和Cm)将与Pu同时提取。这是因为这些act系元素的还原电位与热解法的电解沉积步骤中的液态镉阴极上的Pu的还原电位没有明显区别。因此,除了Pu之外,还考虑了同时针对四种转移场景转移Am和Cm的量。转移情景分析还考虑了通过添加等量的Cf-252来补充中子源排放物,从而掩盖了从TRU-U锭中去除Pu和Cm的隐患。通过结合NaIγ辐射探测系统的模型,使用蒙特卡罗N粒子(MCNP6)辐射传输计算机代码对这五个方案(四个核材料转移方案和一个正常运行方案)进行建模和仿真。结果表明,可以通过NaIγ射线检测系统确认TRU-U锭中是否存在Pu。但是,由于来自TRU伽马射线的干扰,使用NaI伽马射线检测系统很难识别TRU-U锭中U的存在。为了确定TRU-U锭中U的存在,研究了核磁共振(NMR)的应用。 NMR技术采用基于密度泛函理论(DFT)模拟的数值计算方法。 DFT计算结果表明,利用核磁共振技术可以检测热解过程中的铀。此外,通过结合符合中子探测系统的模型,通过MCNP6模拟分析了这四种核材料转移情景。为了掩盖核材料的转移,通过用适当质量的Cf-252中子源代替转移的Pu和Cm来执行模拟,该质量等于转移质量的中子源强度。仿真结果表明,如果使用Pu-to-Cm-244比率方法(文献中提出的方法),这种隐藏(误用)会导致TRU-U锭中的Pu质量估计值被欺骗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号