首页> 外文期刊>Nuclear science and engineering >Sensitivity Analysis of Neutron Multiplicity Counting Statistics Using First-Order Perturbation Theory and Application to a Subcritical Plutonium Metal Benchmark
【24h】

Sensitivity Analysis of Neutron Multiplicity Counting Statistics Using First-Order Perturbation Theory and Application to a Subcritical Plutonium Metal Benchmark

机译:一阶扰动理论对中子多重计数统计的敏感性分析及其在亚临界P金属基准测试中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

It is frequently important to estimate the uncertainty and sensitivity of measured and computed detector responses in subcritical experiments and simulations. These uncertainties arise from the physical construction of the experiment, uncertainties in the transport parameters, and counting uncertainties. Perturbation theory enables sensitivity analysis (SA) and uncertainty quantification on integral quantities like detector responses. The aim of our work is to apply SA to the statistics of subcritical neutron multiplicity counting distributions. Current SA methods have only been applied to mean detector responses and the k(eff) eigenvalue. For multiplicity counting experiments, knowledge of the higher-order counting moments and their uncertainties are essential for a complete SA. We apply perturbation theory to compute the sensitivity of neutron multiplicity counting moments to arbitrarily high order. Each moment is determined by solving an adjoint transport equation with a source term that is a function of the adjoint solutions for lower-order moments. This enables moments of arbitrarily high order to be sequentially determined, and it shows that each moment is sensitive to the uncertainties of all lower-order moments. To close our SA of the moments, we derive forward transport equations that are functions of the forward flux and lower-order moment adjoint fluxes. We verify our calculations for the first three moments by comparison with multiplicity counting measurements of a subcritical plutonium metal sphere. For the first three moments, the most influential parameters are ranked, and the validity of first-order perturbation theory is demonstrated by examining the series truncation error. This enables a detailed SA of subcritical multiplicity counting measurements of fissionable material based on transport theory.
机译:在亚临界实验和模拟中,估计测量和计算出的探测器响应的不确定性和灵敏度通常很重要。这些不确定性来自于实验的物理结构,运输参数的不确定性以及计数的不确定性。摄动理论使灵敏度分析(SA)和不确定性量化能够对检测器响应之类的积分量进行量化。我们的工作目的是将SA应用于亚临界中子多重计数分布的统计。当前的SA方法仅应用于平均检测器响应和k(eff)特征值。对于多重计数实验,高阶计数矩及其不确定性的知识对于完整的SA至关重要。我们应用微扰理论来计算中子多重计数矩对任意高阶的灵敏度。通过用源项解伴随输运方程来确定每个矩,该源项是低阶矩的伴随解的函数。这使得能够顺序确定任意高阶矩,并且表明每个矩对所有低阶矩的不确定性敏感。为了封闭我们的矩SA,我们导出了正向输运方程,该方程是正向通量和低阶矩伴随通量的函数。通过与亚临界p金属球的多重计数测量结果进行比较,我们验证了前三个时刻的计算结果。对于前三个时刻,对影响最大的参数进行排名,并通过检验序列截断误差证明一阶扰动理论的有效性。这样就可以根据传输理论对可裂变材料的亚临界多重计数测量进行详细的SA分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号