首页> 外文期刊>Nuclear fusion >Overview of recent experimental results from the DIII-D advanced tokamak program
【24h】

Overview of recent experimental results from the DIII-D advanced tokamak program

机译:DIII-D高级托卡马克程序最近的实验结果概述

获取原文
获取原文并翻译 | 示例
           

摘要

The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last international atomic energy agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: (1) we have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, we have achieved β_NH_(89) ≥ 10 for 4_(τ_E) limited by the neoclassical tearing mode (NTM); (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the (m, n) = (3, 2) NTM and then increased β_T by 60%; (4) we have produced ECCD stabilization of the (2, 1) NTM in initial experiments; (5) we have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) we have demonstrated stationary tokamak operation for 6.5 s (36_(τ_E)) at the same fusion gain parameter of β_NH_(89)/q_(95)~2 approx= 0.4 as ITER but at much higher q_(95) = 4.2. We have developed general improvements applicable to conventional and AT operating modes: (1) we have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, edge localized modes (ELM) heat load to the divertor and which can run for long periods of time (3.8 s or 25_(τ_E)) with constant density and constant radiated power; (2) we have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; (3) we have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. We have made detailed investigations of the edge pedestal and scrape-off layer (SOL): (1) atomic physics and plasma physics both play significant roles in setting the width of the edge density barrier in H-mode; (2) ELM heat flux conducted to the divertor decreases as density increases; (3) intermittent, bursty transport contributes to cross field particle transport in the SOL of H-mode and, especially, L-mode plasmas.
机译:DIII-D研究计划正在开发先进的托卡马克(AT)操作模式的科学基础,以增强托卡马克作为一种能源生产系统的吸引力。自上次国际原子能机构(IAEA)会议以来,我们在开发AT作业所需的构造块方面取得了重大进展:(1)通过电阻墙模式的旋转稳定,我们将磁流体力学(MHD)稳定的托卡马克作业空间增加了一倍; (2)通过这种旋转稳定,我们获得了4_(τ_E)受新古典撕裂模式(NTM)限制的β_NH_(89)≥10; (3)利用电子回旋加速器电流驱动(ECCD)位置的实时反馈,我们稳定了(m,n)=(3,2)NTM,然后将β_T增加了60%; (4)我们在最初的实验中已经产生了(2,1)NTM的ECCD稳定化; (5)我们使用ECCD进行了具有电流轮廓控制的首个集成式AT示范放电; (6)ECCD和电子回旋加速器(ECH)已用于控制高性能等离子体中的压力分布;和(7)我们已经证明,在与ITER相同的β_NH_(89)/ q_(95)〜2大约= 0.4的融合增益参数下,静止托卡马克运行6.5 s(36_(τ_E))的情况,而q_(95)更高= 4.2。我们已经开发出适用于常规和AT运行模式的一般改进:(1)我们已经证明了托卡马克运行模式,静态H模式,该模式没有向分流器施加脉冲,边缘局部模式(ELM)的热负荷,并且它可以以恒定的密度和恒定的辐射功率长时间运行(3.8 s或25_(τ_E)); (2)我们已经展示了使用高压气体喷射稀有气体对垂直破坏事件进行实时破坏检测和缓解的方法; (3)我们发现,平衡的双零偏流器的内部触击点的热量和粒子通量比外部触击点的热量和粒子通量小得多。我们对边缘基座和刮除层(SOL)进行了详细研究:(1)原子物理学和等离子体物理学都在设置H模式下的边缘密度势垒的宽度方面起着重要作用; (2)传导至偏滤器的ELM热通量随密度的增加而减小; (3)间歇性的突发传输有助于H型,特别是L型等离子体的SOL中的跨场粒子传输。

著录项

  • 来源
    《Nuclear fusion》 |2003年第12期|p. 1555-1569|共15页
  • 作者

    K. H. Burrell;

  • 作者单位

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号