...
首页> 外文期刊>Nuclear fusion >Modeling of the transition mechanism from electrostatic drift-type modes to electromagnetic kinetic ballooning mode- dominant regime in high poloidal-beta discharges
【24h】

Modeling of the transition mechanism from electrostatic drift-type modes to electromagnetic kinetic ballooning mode- dominant regime in high poloidal-beta discharges

机译:高倍体β放电中从静电漂移型模式到电磁动力学膨胀模式主导型过渡机制的建模

获取原文
获取原文并翻译 | 示例
           

摘要

Recent analyses (for example, see the paper by Staebler et al (2018 Phys. Plasmas 056113)) indicate that in DIII-D high poloidal-beta discharges turbulent transport, particularly for ions, is governed by the electromagnetic kinetic ballooning mode (KBM) in most radial regions, including the outer core between the internal and external transport barriers (ITBs and ETBs). Considering that in the usual L- or H-mode plasmas turbulent transport is widely believed to be dominated by the electrostatic drift-type modes, such as the ion temperature gradient (ITG) or trapped electron mode (TEM), a modeling study is presented to show how this transition of dominant modes can occur. In the ITB region, where there already exist several theoretical models, the focus is put on clarifying the relative role between the Shafranov shift and linear electromagnetic effects. While these two can play an important role in the transition or ITB formation by stabilizing the electrostatic drift-type modes, a significant difference is found in that the former mainly works on the TEM, while the latter works on the ITG. In contrast to the ITB region, in the outer core between the ITB and ETB the transition appears to be more relevant to the destabilization of the KBM itself, rather than the stabilization of electrostatic modes. A jump of edge plasma beta through the pedestal formation is shown to play the critical role in this destabilization by making the KBM threshold temperature gradient smaller than that of the ITG/TEM, thus allowing an earlier excitation of KBM when background temperature gradients increase by external heating.
机译:最近的分析(例如,参见Staebler等人的论文(2018 Phys.Plasmas 056113))表明,在DIII-D中,高倍体β放电的湍流传输,特别是离子的湍流传输受电磁动力学膨胀模式(KBM)控制在大多数径向区域,包括内部和外部传输屏障(ITB和ETB)之间的外部核心。考虑到在通常的L或H模式等离子体中,湍流传输普遍被认为是静电漂移型模式(例如离子温度梯度(ITG)或俘获电子模式(TEM))所主导,因此进行了模型研究展示主导模式的这种转变如何发生。在已经存在几种理论模型的ITB地区,重点放在澄清Shafranov位移与线性电磁效应之间的相对作用。尽管这两种通过稳定静电漂移型模式可以在过渡或ITB形成中发挥重要作用,但发现明显的区别在于前者主要在TEM上起作用,而后者在ITG上起作用。与ITB区域相反,在ITB和ETB之间的外部核心中,过渡似乎与KBM本身的不稳定而不是静电模式的稳定有关。通过使KBM阈值温度梯度小于ITG / TEM的阈值温度梯度,表明边缘等离子体β穿过基座形成的跳跃在这种不稳定中起着关键作用,因此当背景温度梯度因外部温度升高而增加时,KBM可以更早地激发加热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号