首页> 外文期刊>Nuclear fusion >ITER breakdown and plasma initiation revisited
【24h】

ITER breakdown and plasma initiation revisited

机译:重现ITER击穿和等离子体引发

获取原文
获取原文并翻译 | 示例
           

摘要

This paper revisits a number of key aspects of plasma initiation, aiming to clarify concepts, provide definitions and improve understanding, in view of ITER First Plasma operation. It shows that size matters and that breakdown and plasma initiation differ in larger devices. The large thick and conductive ITER vessel slows down the prefill process, the development of the toroidal electric field and affects the dynamics of the poloidal magnetic field at breakdown. The large vacuum vessel requires more than 1 s for the prefill gas to spread over the vessel. It slows down the development of the toroidal electric field, applied to ionize the prefill gas, by about 1 s and complicates the control of the magnetic configuration required for plasma initiation. It is shown that the avalanche process that provides the initial ionization slows down towards the end, if the cross-section of the toroidal discharge is larger. On the other hand, a larger plasma volume is beneficial for the subsequent burn-through of main-species ionization and impurity line-radiation. ITER First Plasma operation aims to reach a minimum plasma current of 100 kA, which will require a full avalanche and a partial burn-through to reach electron temperatures of at least 10-20 eV. The burn-through limits the ITER prefill pressure upper range of about 1 mPa. These predictions are based on OD models of plasma initiation that furthermore assume the plasma volume remains constant. As burn-through is a critical process, models that consider radial profiles and/or volume dynamics, could provide further insight in the constraints of ITER plasma initiation. Electron cyclotron heating (ECH) high-power microwaves can be used to assist the ITER plasma initiation process. Although the ECH burn-through assist is reasonably well understood, no model exist that can predict the behaviour of ECH pre-ionization on ITER plasma initiation. ECH burn-through assist is shown to be ineffective for ITER First Plasma operations. Low prefill pressures are thought to increase the likelihood to develop a highly energetic supra-thermal electron discharge during the plasma initiation process. Considering supra-thermal electrons could affect the assumptions for the plasma resistance or even the ionization rate coefficient in plasma initiation models, hence altering the expected dynamics. Furthermore, only a qualitative picture of the processes that cause such supra-thermal discharges exists and a dedicated model is needed to improve ITER predictions.
机译:鉴于ITER First Plasma操作,本文重新探讨了等离子体引发的许多关键方面,旨在阐明概念,提供定义和增进理解。它表明尺寸很重要,并且击穿和等离子体引发在较大的设备中是不同的。大型的厚而导电的ITER容器会减慢预填充过程,环形电场的发展并影响击穿时的极向磁场的动力学。大型真空容器需要超过1 s的时间才能使预填充气体散布在容器上。它将用于使预填充气体离子化的环形电场的发展速度降低了大约1 s,并使控制等离子体引发所需的磁结构变得复杂。结果表明,如果环形放电的横截面较大,则提供初始电离作用的雪崩过程会逐渐减慢。另一方面,较大的等离子体体积有利于后续主要物种电离和杂质线辐射的烧穿。 ITER First Plasma操作旨在达到100 kA的最小等离子体电流,这将需要完全雪崩和部分烧穿才能达到至少10-20 eV的电子温度。烧穿将ITER预填充压力上限限制在大约1 mPa。这些预测基于血浆引发的OD模型,该模型还假设血浆体积保持恒定。由于烧穿是关键过程,因此考虑径向轮廓和/或体积动态的模型可以进一步了解ITER等离子体引发的约束条件。电子回旋加速器加热(ECH)大功率微波可用于协助ITER等离子体引发过程。尽管相当了解ECH烧穿辅助技术,但尚无模型可以预测ETER等离子体启动时ECH预电离的行为。 ECH烧穿辅助技术对ITER First Plasma操作无效。低的预填充压力被认为增加了在等离子体引发过程中产生高能超热电子放电的可能性。考虑到超热电子可能会影响等离子引发模型中有关等离子电阻甚至电离速率系数的假设,从而改变了预期的动力学。此外,仅存在引起此类超热放电的过程的定性描述,并且需要专用模型来改善ITER预测。

著录项

  • 来源
    《Nuclear fusion》 |2019年第9期|096043.1-096043.27|共27页
  • 作者

    de Vries P. C.; Gribov Y.;

  • 作者单位

    ITER Org Route Vinon sur Verdon F-13067 St Paul Les Durance France|ITER Org Route Vinon Sur Verdon F-13067 St Paul Les Durance France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma initiation; tokamak breakdown; ITER;

    机译:血浆引发托卡马克故障;国际热核实验堆;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号