...
首页> 外文期刊>Nuclear Engineering and Design >A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow. Part 1: Application to the ASU-annular channel case
【24h】

A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow. Part 1: Application to the ASU-annular channel case

机译:基于雷诺应力方法的两相沸腾二阶湍流模型。第1部分:应用于ASU环形通道的情况

获取原文
获取原文并翻译 | 示例
           

摘要

High-thermal performance PWR (pressurized water reactor) spacer grids require both low pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required.rnIn the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation eddy viscosity models (EVM), especially the standard K-ε model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional.rnBut extensive testing and application over the past three decades have revealed a number of shortcomings and deficiencies in eddy viscosity models. In fact, the K-ε model is totally blind to rotation effects and the swirling flows can be regarded as a special case of fluid rotation. This aspect is crucial for the simulation of a hot channel in a fuel assembly. In fact, the mixing vanes of the spacer grids generate a swirl in the coolant water, to enhance the heat transfer from the rods to the coolant in the hot channels and to limit boiling.rnFirst, we started to evaluate computational fluid dynamics results against the AGATE-mixing experiment: single-phase liquid water tests, with Laser-Doppler liquid velocity measurements upstream and downstream of mixing blades. The comparison of computed and experimental azimuthal (circular component in a horizontal plane) liquid velocity downstream of a mixing vane for the AGATE-mixing test shows that the rotating flow is qualitatively well reproduced by CFD calculations but azimuthal liquid velocity is underestimated with the K-ε model.rnBefore comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with a simpler geometry, the ASU-annular channel case. A wall function model dedicated to boiling flows is also proposed.
机译:高热性能的PWR(压水堆)隔栅既需要低压损失又需要高临界热通量(CHF)特性。需要对混合叶片的角度和位置的影响进行数值研究,并更详细地了解主要的物理现象(壁沸腾,尾流中夹带气泡,再冷凝)。在燃料组件分析或设计领域CFD代码是绝大多数研究使用二方程涡流粘度模型(EVM),尤其是标准K-ε模型进行的方法,而雷诺应力传递模型(RSTM)的使用仍然是例外.rn但是广泛的测试和应用在过去的三十年中,发现了涡流粘度模型的许多缺点和不足。实际上,K-ε模型完全看不到旋转效应,旋流可被视为流体旋转的一种特殊情况。这方面对于模拟燃料组件中的热通道至关重要。实际上,间隔栅的混合叶片会在冷却剂水中产生涡流,以增强从棒到热通道中的冷却剂的热传递并限制沸腾。首先,我们开始针对流体力学计算评估流体动力学结果。 AGATE混合实验:单相液态水测试,并在混合叶片的上游和下游进行Laser-Doppler液体速度测量。在AGATE混合试验中,计算叶片和实验叶片的混合叶片下游的方位角(水平平面上的)液体速度的比较表明,旋转流在质量上得到了很好的再现,但方位角液体速度却被K-低估了。 ε模型。在比较EVM和RSTM模型在燃料组件几何形状上的性能之前,我们使用一个更简单的几何形状(ASU环形通道情况)进行了计算。还提出了专门用于沸腾流动的壁函数模型。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2010年第9期|P.2233-2243|共11页
  • 作者单位

    Etectricite de France R&D Division, 6 Quai Watier, F-78400 Chatou, France;

    rnEtectricite de France R&D Division, 6 Quai Watier, F-78400 Chatou, France;

    rnEtectricite de France R&D Division, 6 Quai Watier, F-78400 Chatou, France;

    rnEtectricite de France R&D Division, 6 Quai Watier, F-78400 Chatou, France;

    rnCommissariat a l'Energie Atomique, 17 rue des Martyrs, F-38000 Grenoble, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号