首页> 外文期刊>Nuclear Engineering and Design >Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs
【24h】

Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs

机译:高温气冷堆中间热交换器PCHE的物理模型开发和优化设计

获取原文
获取原文并翻译 | 示例
           

摘要

A printed circuit heat exchanger (PCHE) is considered for use as an intermediate heat exchanger (IHX) in high temperature gas-cooled Reactors (HTGRs), since PCHEs offer high effectiveness and a compact size. A PCHE consists of many micro-wavy channels, which increase heat transfer and pressure drop. The design parameters of PCHEs, such as angle, pitch, and hydraulic diameter, can significantly influence thermal-hydraulic performance. We investigated the thermal-hydraulic performance of a PCHE in a helium-helium test loop, both experimentally and numerically. In the tested PCHE, the channel has a 0.922 mm hydraulic diameter, 24.6mm pitch, and 15° angle. The three-dimensional (3D) numerical model, which was based on the commercial fluid dynamics (CFD) code called FLUENT, was well validated against the experimental data. Then, we used the CFD code to develop physical models for the Fanning factor and the Nusselt number for various geometries, including angle, pitch, and diameter. The angle was varied from 5° to 45°, the pitch length was varied between 24.6 mm and 12.3 mm, and the diameter was varied from 1.51 mm to 2 mm. Dimensionless parameters, such as Reynolds number, Nusselt number, and Fanning factor, were averaged by a local-pitch using local information produced by the numerical results. Finally, we developed correlations for the Fanning factor and the Nusselt number for PCHEs with various geometries, and used those correlations to propose the optimal IHX through the cost analysis.
机译:印刷电路换热器(PCHE)被认为可以用作高温气冷堆(HTGR)中的中间换热器(IHX),因为PCHE具有很高的效率和紧凑的尺寸。 PCHE由许多微波浪形通道组成,这些通道会增加传热和压降。 PCHE的设计参数(例如角度,螺距和水力直径)会显着影响热工液压性能。我们通过实验和数值研究了氦氦试验回路中PCHE的热工液压性能。在经过测试的PCHE中,通道的液压直径为0.922毫米,螺距为24.6毫米,角度为15°。基于称为FLUENT的商业流体动力学(CFD)代码的三维(3D)数值模型已针对实验数据进行了很好的验证。然后,我们使用CFD代码为各种几何形状(包括角度,间距和直径)开发了Fanning因子和Nusselt数的物理模型。角度从5°到45°变化,节距长度在24.6mm和12.3mm之间变化,并且直径从1.51mm到2mm变化。使用数值结果产生的局部信息,通过局部螺距对无量纲参数(例如雷诺数,努塞尔数和范宁系数)进行平均。最后,我们开发了具有各种几何形状的PCHE的Fanning因子和Nusselt数的相关性,并使用这些相关性通过成本分析提出了最佳IHX。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2012年第2期|p.243-250|共8页
  • 作者

    In Hun Kim; Hee Cheon No;

  • 作者单位

    Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea;

    Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号