首页> 外文期刊>Nuclear Engineering and Design >LWR severe accident simulation: Iodine behaviour in FPT2 experiment and advances on containment iodine chemistry
【24h】

LWR severe accident simulation: Iodine behaviour in FPT2 experiment and advances on containment iodine chemistry

机译:LWR严重事故模拟:FPT2实验中的碘行为及安全壳碘化学的进展

获取原文
获取原文并翻译 | 示例
           

摘要

The Phebus Fission Product (FP) Program studies key phenomena of severe accidents in water-cooled nuclear reactors. In the framework of the Phebus program, five in-pile experiments have been performed that cover fuel rod degradation and behaviour of fission products released via the coolant circuit into the containment vessel. The focus of this paper is on iodine behaviour during the Phebus FPT2 test. FPT2 used a 33 GWd/t uranium dioxide fuel enriched to 4.5%, re-irradiated in situ for 7 days to a burn-up of 130 MWd/t. This test was performed to study the impact of steam-poor conditions and boric acid on the fission product chemistry. For the containment vessel, more specifically, the objective was to study iodine chemistry in an alkaline sump under evaporating conditions. The iodine results of the Phebus FPT2 test confirmed many of the essential features of iodine behaviour in the containment vessel provided by the first two Phebus tests, FPTO and FPT1. These are the existence of an early gaseous iodine fraction, the persistence of low gaseous iodine concentrations and the importance of the sump in suppressing the iodine partitioning from sump to atmosphere. The main new insights provided by the Phebus FPT2 test were the iodine desorption from stainless steel walls deposits and the role of the evaporating sump in further iodine depletion in the containment atmosphere. The current paper presents an interpretation of the iodine behaviour in the FPT2 containment vessel based on dedicated small-scale analytical experiments and computer codes calculations. Other investigations dealing with primary circuit and sump chemistry are also reported. These could help to scale the results of Phebus-FP tests to reactor accidents. Modelling studies were generally successful when a gaseous iodine injection from the primary circuit was assumed. Indeed, though each of the iodine codes has specific iodine chemistry features that should be further developed and each approach to the modelling is distinct, the overall iodine behaviour in the FPT2 containment is generally well reproduced by the models that predict: 1.a low final gaseous iodine concentration in the containment atmosphere, 2.a predominant iodine concentration in the sump and to a lesser extent a significant iodine deposition on containment surfaces. The main code-to-code differences, in the results obtained in gaseous iodine speciation, come from the various treatments of gaseous radiolytic reactions. Calculations that include the radiolytic conversion of volatile iodine into iodine oxide particulate show there is a persistence of both gaseous iodine and iodine oxide particles in the atmosphere. There are also some variations between the predicted organic iodine concentrations that depend mainly on the initial assumptions. A key aspect of the Phebus FPT2 test interpretation is that the long term iodine behaviour in the containment can be explained by exchanges between organic iodide released from painted surfaces and inorganic iodine released from deposited aerosol on the containment walls. Further studies of regulatory significance on sump chemistry showed that the gaseous iodine control that was evident in the Phebus tests through silver release and/or alkaline buffered sump solutions may not be assured. As most of the past iodine aqueous chemistry studies were done with rather pure systems and because of the uncompleted understanding of the gaseous iodine speciation, the results may not be extrapolated easily to conditions of reactor accidents thus necessitating deeper investigations.
机译:Phebus裂变产品(FP)计划研究水冷核反应堆中严重事故的关键现象。在Phebus程序的框架内,已进行了五个堆内实验,这些实验涵盖了燃料棒的降解以及通过冷却剂回路释放到安全壳中的裂变产物的行为。本文的重点是在Phebus FPT2测试期间的碘行为。 FPT2使用了浓缩至4.5%的33 GWd / t二氧化铀燃料,原位再辐照7天,燃尽量为130 MWd / t。进行该测试以研究贫蒸汽条件和硼酸对裂变产物化学的影响。对于安全壳容器,更具体地说,目的是研究在蒸发条件下的碱槽中的碘化学。 Phebus FPT2测试的碘结果证实了前两个Phebus测试FPTO和FPT1提供的安全壳中碘行为的许多基本特征。这些是早期气态碘含量的存在,气态碘浓度低的持续存在以及贮槽在抑制碘从贮槽向大气中分配方面的重要性。 Phebus FPT2测试提供的主要新见解是不锈钢壁沉积物中的碘解吸,以及蒸发池在密闭气氛中碘进一步消耗中的作用。本文基于专用的小型分析实验和计算机代码计算,对FPT2安全壳中的碘行为进行了解释。还报道了其他有关一次回路和贮槽化学的研究。这些可以帮助将Phebus-FP测试的结果扩展到反应堆事故。当假定从一次回路注入气态碘时,建模研究通常是成功的。确实,尽管每个碘代号都具有特定的碘化学特征,应进一步开发,并且每种建模方法都不同,但FPT2密闭容器中的总体碘行为通常可以很好地再现出以下模型:1.低最终值安全壳气氛中的气态碘浓度,集水槽中主要的碘浓度和较小程度的碘沉积在安全壳表面上2。在气态碘形态分析中获得的结果中,主要的代码间差异主要来自气态辐射分解反应的各种处理方法。包括从挥发性碘到放射性氧化碘颗粒的辐射分解在内的计算表明,大气中同时存在气态碘和氧化碘颗粒。预测的有机碘浓度之间也存在一些差异,这些差异主要取决于初始假设。 Phebus FPT2测试解释的一个关键方面是,在安全壳内的长期碘行为可以通过从涂漆表面释放的有机碘化物与从安全壳壁上沉积的气溶胶释放的无机碘之间的交换来解释。对贮槽化学的监管重要性的进一步研究表明,在Phebus测试中通过释放银和/或碱性缓冲贮槽溶液而明显控制气态碘可能无法得到保证。由于过去的大多数碘水化学研究都是通过相当纯的系统进行的,并且由于对气态碘形态的理解还不完全,结果可能不容易推算到反应堆事故的状况,因此需要进行更深入的研究。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2012年第2期|p.371-392|共22页
  • 作者单位

    Institut de Radioprotection et de Surete Nucl6aire (IRSN), BP3 -13115 St.-Paul-lez-Durance, France;

    Institut de Radioprotection et de Surete Nucl6aire (IRSN), BP3 -13115 St.-Paul-lez-Durance, France;

    National Nuclear Laboratory, Harwell, Oxon 0X11 OQT, United Kingdom;

    AREVA NP Gmbh, PO Box 1109,91001 Erlangen, Germany;

    Paul Scherrer Institut, 5232 Villigen PS1, Switzerland;

    Centro des Investigations Energeticas, MedioAmbiantales y Tecnologicas, av. Complutense 2,28040 Madrid, Spain;

    Sandia National Laboratories, New Mexico, PO Box 5800, Albuquerque, NM 87185, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号