...
首页> 外文期刊>Nuclear Engineering and Design >Numerical error analysis for three-dimensional CFD simulations in the two- room model containment THAI + : Grid convergence index, wall treatment error and scalability tests
【24h】

Numerical error analysis for three-dimensional CFD simulations in the two- room model containment THAI + : Grid convergence index, wall treatment error and scalability tests

机译:在两室模型包含THAI +中进行三维CFD模拟的数值误差分析:网格收敛指数,墙体处理误差和可扩展性测试

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a step to define Best Practice Guidelines for CFD simulations in nuclear containment applications and other disciplines with similar complex geometries. For the two-room model containment THAI(+), a three-dimensional natural convection flow simulation was performed using the CFD package Ansys CFX 16.1. For the quantification of the numerical error, the applicability of three versions of the Grid Convergence Index GCI to the complex flow field was tested. Those are the Standard method REM, the Blend Factor Method BFM and the Least Squares Method LSQ. Using these methods, the spatial discretization errors were quantified on six grids with different refinement levels up to 39.731.10(6) elements. Besides, the model error due to the different wall treatment approaches was also quantified. For this, the simulation results on grids with different y(+) ranges were compared. Relative errors of approximately 58.40%, 7.2%, 8.43% and 0.96% were detected in the volumeintegrated vorticity, temperature, mass flows and pressure between the simulations using the low-Reynolds approach (y(+) 1) and the wall function of the SST model (y(+) 30). The parallel performance of the calculations was also investigated on a CRAY XC-40 using four grids with different resolutions. The maximum speedup was achieved on approximately 1838 computational cores on the finest grid with 83.10(6) elements and 24.10(6) nodes and on 562 cores on the coarsest grid with 1.268.10(6) elements and 0.347.10(6) nodes. The insight and results of the GCI, wall treatment and scalability studies can be used as guidelines, on which future CFD containment simulations can be based. Finally, the comparison of the simulation results with the experimental data was carried out.
机译:本文介绍了为核安全壳应用和具有类似复杂几何形状的其他学科中的CFD模拟定义最佳实践指南的步骤。对于包含两个房间的模型THAI(+),使用CFD软件包Ansys CFX 16.1执行了三维自然对流流动仿真。为了量化数值误差,测试了三种版本的Grid Convergence Index GCI对复杂流场的适用性。这些是标准方法REM,混合因子方法BFM和最小二乘法LSQ。使用这些方法,在离散度最高为39.731.10(6)个元素的六个网格上量化了空间离散误差。此外,还量化了由于壁处理方法不同而引起的模型误差。为此,比较了具有不同y(+)范围的网格上的仿真结果。在使用低雷诺方法(y(+)<1)进行的模拟与壁函数之间的体积积分涡度,温度,质量流量和压力之间,发现相对误差约为58.40%,7.2%,8.43%和0.96%。 SST模型(y(+)> 30)。还使用四个分辨率不同的网格在CRAY XC-40上研究了计算的并行性能。在具有83.10(6)个元素和24.10(6)个节点的最细网格上大约1838个计算核心上以及在具有1.268.10(6)个元素和0.347.10(6)个节点的最粗糙网格上的562个核心上实现了最大加速。 GCI,墙面处理和可扩展性研究的见解和结果可以用作指导,将来的CFD密闭模拟可以以此为基础。最后,将仿真结果与实验数据进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号