...
首页> 外文期刊>New Generation Computing >Parallel Interaction Detection Algorithms for a Particle-based Live Controlled Real-time Microtubule Gliding Simulation System Accelerated by GPGPU
【24h】

Parallel Interaction Detection Algorithms for a Particle-based Live Controlled Real-time Microtubule Gliding Simulation System Accelerated by GPGPU

机译:GPGPU加速的基于粒子的实时控制的实时微管滑翔模拟系统的并行交互检测算法

获取原文
获取原文并翻译 | 示例
           

摘要

Real-time simulations have been getting more attention in the field of self-organizing molecular pattern formation such as a microtubule gliding assay. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics in silico, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation parameters in a real-time fashion. For the recreation of microtubule dynamics our model proposes the use of the Lennard-Jones potential for our particle-based simulation, as well as a flocking algorithm for self-organization. One of the technical challenges when creating a real-time 3D simulation is computational scalability performance, as well as balancing the 3D rendering and computing work flows. GPU programming plays an essential role in executing the millions of tasks necessary for microtubule interaction detection and makes this real-time 3D simulation possible. However, an excess number of tasks sometimes causes a memory bottleneck which prevents performance scalability when using GPGPU processing. In order to alleviate the memory bottleneck, we propose a new parallel interaction detection algorithm that uses warp level optimizations for the two memory bound interactions discussed in this paper.
机译:实时模拟在自组织分子模式形成领域(例如微管滑动分析)中越来越受到关注。当在滑动实验中建立适当的微管相互作用时,微管通常会组织并创建更高水平的动力学,例如环和束结构。为了在计算机上重现这种更高级别的动态,我们一直专注于进行实时3D微管仿真。这种实时3D微管仿真使我们能够通过实时调整仿真参数来获得有关微管动力学及其群运动的更多知识。为了恢复微管动力学,我们的模型建议将Lennard-Jones势用于基于粒子的仿真,以及用于自组织的植绒算法。创建实时3D模拟时的技术挑战之一是计算可伸缩性性能以及平衡3D渲染和计算工作流程。 GPU编程在执行微管交互检测所需的数百万个任务中起着至关重要的作用,并使这种实时3D仿真成为可能。但是,过多的任务有时会导致内存瓶颈,从而在使用GPGPU处理时阻止性能扩展。为了缓解内存瓶颈,我们提出了一种新的并行交互检测算法,该算法对本文讨论的两个内存绑定交互使用了扭曲级别优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号