首页> 外文期刊>Neurocomputing >Pre-training the deep generative models with adaptive hyperparameter optimization
【24h】

Pre-training the deep generative models with adaptive hyperparameter optimization

机译:通过自适应超参数优化对深度生成模型进行预训练

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of many machine learning algorithms depends crucially on the hyperparameter settings, especially in Deep Learning. Manually tuning the hyperparameters is laborious and time consuming. To address this issue, Bayesian optimization (BO) methods and their extensions have been proposed to optimize the hyperparameters automatically. However, they still suffer from highly computational expense when applying to deep generative models (DGMs) due to their strategy of the black-box function optimization. This paper provides a new hyperparameter optimization procedure at the pre-training phase of the DGMs, where we avoid combining all layers as one black-box function by taking advantage of the layer-by-layer learning strategy. Following this procedure, we are able to optimize multiple hyperparameters in an adaptive way by using Gaussian process. In contrast to the traditional BO methods, which mainly focus on the supervised models, the pre-training procedure is unsupervised where there is no validation error can be used. To alleviate this problem, this paper proposes a new holdout loss, the free energy gap, which takes into account both factors of the model fitting and over-fitting. The empirical evaluations demonstrate that our method not only speeds up the process of hyperparameter optimization, but also improves the performances of DGMs significantly in both the supervised and unsupervised learning tasks. (C) 2017 Elsevier B.V. All rights reserved.
机译:许多机器学习算法的性能主要取决于超参数设置,尤其是在深度学习中。手动调整超参数既费力又费时。为了解决此问题,提出了贝叶斯优化(BO)方法及其扩展以自动优化超参数。但是,由于其黑盒功能优化策略,当应用于深度生成模型(DGM)时,它们仍然遭受大量计算开销。本文在DGM的预训练阶段提供了一种新的超参数优化程序,在该程序中,我们通过利用逐层学习策略来避免将所有层组合为一个黑盒函数。按照此过程,我们能够通过使用高斯过程以自适应方式优化多个超参数。与传统的BO方法(主要侧重于监督模型)相反,在没有验证错误的情况下,预训练过程是不受监督的。为了缓解这个问题,本文提出了一个新的保持损耗,即自由能隙,它考虑了模型拟合和过度拟合的两个因素。经验评估表明,我们的方法不仅可以加速超参数优化的过程,而且可以在有监督和无监督的学习任务中显着提高DGM的性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号