首页> 外文期刊>Neural computation >Detecting and Estimating Signals in Noisy Cable Structures, II: Information Theoretical Analysis
【24h】

Detecting and Estimating Signals in Noisy Cable Structures, II: Information Theoretical Analysis

机译:在嘈杂的电缆结构中检测和估计信号,II:信息理论分析

获取原文
获取原文并翻译 | 示例
           

摘要

This is the second in a series of articles that seek to recast classical single-neuron biophysics in information-theoretical terms. Classical cable theory focuses on analyzing the voltage or current attenuation of a synaptic signal as it propagates from its dendritic input location to the spike initiation zone. On the other hand, we are interested in analyzing the amount of information lost about the signal in this process due to the presence of various noise sources distributed throughout the neuronal membrane. We use a stochastic version of the linear one-dimensional cable equation to derive closed-form expressions for the second-order moments of the fluctuations of the membrane potential associated with different membrane current noise sources: thermal noise, noise due to the random opening and closing of sodium and potassium channels, and noise due to the presence of “spontaneous” synaptic input. We consider two different scenarios. In the signal estimation paradigm, the time course of the membrane potential at a location on the cable is used to reconstruct the detailed time course of a random, band-limited current injected some distance away. Estimation performance is characterized in terms of the coding fraction and the mutual information. In the signal detection paradigm, the membrane potential is used to determine whether a distant synaptic event occurred within a given observation interval. In the light of our analytical results, we speculate that the length of weakly active apical dendrites might be limited by the information loss due to the accumulated noise between distal synaptic input sites and the soma and that the presence of dendritic nonlinearities probably serves to increase dendritic information transfer.
机译:这是系列文章中的第二篇,旨在以信息论的角度重塑经典的单神经元生物物理学。经典电缆理论专注于分析突触信号从其树突状输入位置传播到尖峰起始区域时的电压或电流衰减。另一方面,由于存在分布在整个神经元膜上的各种噪声源,我们有兴趣分析此过程中有关信号丢失的信息量。我们使用线性一维电缆方程的随机形式来导出与不同膜电流噪声源相关的膜电位波动的二阶矩的闭式表达式:热噪声,由于随机打开而产生的噪声和钠和钾通道的关闭,以及由于“自发”突触输入的存在而产生的噪音。我们考虑两种不同的情况。在信号估计范例中,电缆上某个位置的膜电势的时程用于重构某个距离之外注入的随机,带限电流的详细时程。估计性能以编码分数和互信息为特征。在信号检测范例中,膜电位用于确定在给定的观察间隔内是否发生了遥远的突触事件。根据我们的分析结果,我们推测,由于远端突触输入位点和躯体之间积累的噪声,弱活性根尖树突的长度可能受到信息丢失的限制,并且树突非线性的存在可能有助于增加树突。信息传递。

著录项

  • 来源
    《Neural computation》 |1999年第8期|1831-1873|共43页
  • 作者

    Manwani A; Koch C;

  • 作者单位

    Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA 91125, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号