首页> 外文期刊>Nature >A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
【24h】

A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements

机译:具有定量同位素测量的严格电化学氨合成方案

获取原文
获取原文并翻译 | 示例
           

摘要

The electrochemical synthesis of ammonia from nitrogen under mild conditions using renewable electricity is an attractive alternative(1-4) to the energy-intensive Haber-Bosch process, which dominates industrial ammonia production. However, there are considerable scientific and technical challenges(5,6) facing the electrochemical alternative, and most experimental studies reported so far have achieved only low selectivities and conversions. The amount of ammonia produced is usually so small that it cannot be firmly attributed to electrochemical nitrogen fixation(7-9) rather than contamination from ammonia that is either present in air, human breath or ion-conducting membranes(9), or generated from labile nitrogen-containing compounds (for example, nitrates, amines, nitrites and nitrogen oxides) that are typically present in the nitrogen gas stream(10), in the atmosphere or even in the catalyst itself. Although these sources of experimental artefacts are beginning to be recognized and managed(11,12), concerted efforts to develop effective electrochemical nitrogen reduction processes would benefit from benchmarking protocols for the reaction and from a standardized set of control experiments designed to identify and then eliminate or quantify the sources of contamination. Here we propose a rigorous procedure using N-15(2) that enables us to reliably detect and quantify the electrochemical reduction of nitrogen to ammonia. We demonstrate experimentally the importance of various sources of contamination, and show how to remove labile nitrogen-containing compounds from the nitrogen gas as well as how to perform quantitative isotope measurements with cycling of N-15(2) gas to reduce both contamination and the cost of isotope measurements. Following this protocol, we find that no ammonia is produced when using the most promising pure-metal catalysts for this reaction in aqueous media, and we successfully confirm and quantify ammonia synthesis using lithium electrodeposition in tetrahydrofuran(13). The use of this rigorous protocol should help to prevent false positives from appearing in the literature, thus enabling the field to focus on viable pathways towards the practical electrochemical reduction of nitrogen to ammonia.
机译:使用可再生电力在温和条件下从氮的氨的电化学合成是一种有吸引力的替代品(1-4),用于能量 - 密集的Haber-Bosch工艺,其主导工业氨生产。然而,面临电化学替代方案的相当大的科学和技术挑战(5,6),到目前为止报告的大多数实验研究只实现了低选择性和转换。产生的氨的量通常很小,即它不能牢固地归因于电化学氮固定(7-9)而不是来自空气,人呼吸或离子导电膜(9)中存在的氨的污染,或产生含少含氮化合物(例如,硝酸盐,胺,亚硝酸盐和氮氧化物),其通常存在于氮气流(10)中,在大气中或甚至在催化剂本身中。尽管这些实验艺术品来源开始被识别和管理(11,12),但开发有效的电化学氮缩减过程的协调努力将受益于反应的基准协议,以及从旨在识别的标准化的对照实验组中受益,然后消除或量化污染源。在这里,我们提出了一种使用N-15(2)的严格的程序,使我们能够可靠地检测和量化氮气的电化学还原。我们证明了各种污染源的重要性,并展示了如何从氮气中除去不稳定的氮化合物以及如何用N-15(2)气体的循环来进行定量同位素测量以减少污染和污染同位素测量的成本。在该方案之后,我们发现在使用最有前途的纯金属催化剂在水性介质中使用最有前途的纯金属催化剂时,并且我们在四氢呋喃(13)中使用锂电沉积成功地证实和量化氨合成。这种严谨的协议的使用应该有助于防止文献中出现误报,从而使该领域能够专注于朝向氨的实际电化学减少的可行途径。

著录项

  • 来源
    《Nature》 |2019年第7762期|504-508|共5页
  • 作者单位

    Tech Univ Denmark Dept Phys Lyngby Denmark;

    Tech Univ Denmark Dept Phys Lyngby Denmark;

    Tech Univ Denmark Dept Phys Lyngby Denmark|KIST Ctr Energy Mat Res Seoul South Korea;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Tech Univ Denmark Dept Chem Lyngby Denmark;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Imperial Coll London Dept Mat London England;

    Tech Univ Denmark Dept Phys Lyngby Denmark;

    Tech Univ Denmark Dept Phys Lyngby Denmark;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Imperial Coll London Dept Mat London England;

    Stanford Univ Dept Chem Engn SUNCAT Ctr Interface Sci & Catalysis Stanford CA 94305 USA;

    Tech Univ Denmark Dept Phys Lyngby Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号