首页> 外文期刊>Nature >Signatures of tunable superconductivity in a trilayer graphene moire superlattice
【24h】

Signatures of tunable superconductivity in a trilayer graphene moire superlattice

机译:三层石墨烯云纹超晶格中可调谐超导性的特征

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the mechanism of high-transition-temperature (high-T-c) superconductivity is a central problem in condensed matter physics. It is often speculated that high-T-c superconductivity arises in a doped Mott insulator(1) as described by the Hubbard model(2-4). An exact solution of the Hubbard model, however, is extremely challenging owing to the strong electron-electron correlation in Mott insulators. Therefore, it is highly desirable to study a tunable Hubbard system, in which systematic investigations of the unconventional superconductivity and its evolution with the Hubbard parameters can deepen our understanding of the Hubbard model. Here we report signatures of tunable superconductivity in an ABC-trilayer graphene (TLG) and hexagonal boron nitride (hBN) moire superlattice. Unlike in 'magic angle' twisted bilayer graphene, theoretical calculations show that under a vertical displacement field, the ABC-TLG/hBN heterostructure features an isolated flat valence miniband associated with a Hubbard model on a triangular superlattice(5,6) where the bandwidth can be tuned continuously with the vertical displacement field. Upon applying such a displacement field we find experimentally that the ABC-TLG/hBN superlattice displays Mott insulating states below 20 kelvin at one-quarter and one-half fillings of the states, corresponding to one and two holes per unit cell, respectively. Upon further cooling, signatures of superconductivity ('domes') emerge below 1 kelvin for the electron-and hole-doped sides of the one-quarter-filling Mott state. The electronic behaviour in the ABC-TLG/hBN superlattice is expected to depend sensitively on the interplay between the electron-electron interaction and the miniband bandwidth. By varying the vertical displacement field, we demonstrate transitions from the candidate superconductor to Mott insulator and metallic phases. Our study shows that ABC-TLG/hBN heterostructures offer attractive model systems in which to explore rich correlated behaviour emerging in the tunable triangular Hubbard model.
机译:了解高转变温度(high-T-c)超导的机理是凝聚态物理的核心问题。如哈伯德模型(2-4)所述,经常有人推测在掺杂的Mott绝缘体(1)中会出现高T-c超导性。然而,由于Mott绝缘子具有很强的电子-电子相关性,因此Hubbard模型的精确解决方案极具挑战性。因此,迫切需要研究一种可调的Hubbard系统,其中对非常规超导性及其随Hubbard参数的演化的系统研究可以加深我们对Hubbard模型的理解。在这里,我们报告在ABC三层石墨烯(TLG)和六方氮化硼(hBN)莫尔超晶格中可调超导性的特征。与在``魔角''扭曲的双层石墨烯中不同,理论计算表明,在垂直位移场下,ABC-TLG / hBN异质结构在三角形超晶格(5,6)上具有与Hubbard模型相关的孤立平价微带(5,6)可以与垂直位移场连续调整。在施加了这样的位移场后,我们通过实验发现,ABC-TLG / hBN超晶格在四分之一和二分之一的状态填充下显示出低于20开尔文的Mott绝缘状态,分别对应于每单位晶胞一个和两个孔。进一步冷却后,四分之一填充的莫特态的电子和空穴掺杂面在1开尔文以下出现超导性标志(“圆顶”)。预计ABC-TLG / hBN超晶格中的电子行为将敏感地取决于电子-电子相互作用与微带带宽之间的相互作用。通过改变垂直位移场,我们证明了从候选超导体到莫特绝缘子和金属相的过渡。我们的研究表明,ABC-TLG / hBN异质结构提供了有吸引力的模型系统,可用于探索可调三角Hubbard模型中出现的丰富的相关行为。

著录项

  • 来源
    《Nature》 |2019年第7768期|215-219|共5页
  • 作者单位

    Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;

    Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA|SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA;

    Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;

    Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA|SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA;

    SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA|Stanford Univ, Dept Phys, Stanford, CA 94305 USA;

    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;

    Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan;

    Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan;

    Univ Seoul, Dept Phys, Seoul, South Korea;

    Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai, Peoples R China|Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China;

    SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA|Stanford Univ, Dept Phys, Stanford, CA 94305 USA;

    Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China|Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China|Fudan Univ, Dept Phys, Shanghai, Peoples R China|Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai, Peoples R China;

    Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA|Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号