首页> 外文期刊>Nature >45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
【24h】

45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet

机译:高温超导磁体产生的45.5特斯拉直流磁场

获取原文
获取原文并翻译 | 示例
           

摘要

Strong magnetic fields are required in many fields, such as medicine (magnetic resonance imaging), pharmacy (nuclear magnetic resonance), particle accelerators (such as the Large Hadron Collider) and fusion devices (for example, the International Thermonuclear Experimental Reactor, ITER), as well as for other diverse scientific and industrial uses. For almost two decades, 45 tesla has been the highest achievable direct-current (d.c.) magnetic field; however, such a field requires the use of a 31-megawatt, 33.6-tesla resistive magnet inside 11.4-tesla low-temperature superconductor coils(1), and such high-power resistive magnets are available in only a few facilities worldwide(2). By contrast, superconducting magnets are widespread owing to their low power requirements. Here we report a high-temperature superconductor coil that generates a magnetic field of 14.4 tesla inside a 31.1-tesla resistive background magnet to obtain a d.c. magnetic field of 45.5 tesla-the highest field achieved so far, to our knowledge. The magnet uses a conductor tape coated with REBCO (REBa2Cu3Ox, where RE = Y, Gd) on a 30-micrometre-thick substrate(3), making the coil highly compact and capable of operating at the very high winding current density of 1,260 amperes per square millimetre. Operation at such a current density is possible only because the magnet is wound without insulation(4), which allows rapid and safe quenching from the superconducting to the normal state(5-10). The 45.5-tesla test magnet validates predictions11 for high-field copper oxide superconductor magnets by achieving a field twice as high as those generated by low-temperature superconducting magnets.
机译:在许多领域中都需要强磁场,例如医学(磁共振成像),药学(核磁共振),粒子加速器(例如大强子对撞机)和聚变设备(例如国际热核实验堆,ITER)以及其他多种科学和工业用途。近二十年来,45特斯拉一直是可达到的最高直流(dc)磁场。但是,在这样的领域,需要在11.4特斯拉低温超导线圈(1)内使用31兆瓦,33.6特斯拉的电阻磁体,而这种大功率的电阻磁体仅在全球范围内少数设施中可用(2)。 。相比之下,超导磁体由于其低功率需求而得到广泛应用。在这里,我们报告了一个高温超导体线圈,该线圈在31.1特斯拉电阻型背景磁铁内部产生14.4特斯拉磁场,从而获得直流电。据我们所知,磁场强度为45.5特斯拉-迄今为止达到的最高磁场。磁铁使用在30微米厚的基板上涂覆有REBCO的导体带(REBa2Cu3Ox,RE = Y,Gd)(3),从而使线圈高度紧凑,并能够在1,260安培的极高绕组电流密度下工作每平方毫米。仅在不缠绕绝缘体的情况下缠绕磁体,才有可能在这样的电流密度下运行(4),这允许从超导快速恢复到正常状态(5-10)。 45.5特斯拉测试磁体通过获得比低温超导磁体产生的磁场高两倍的磁场,验证了对高场氧化铜超导体磁体的预测11。

著录项

  • 来源
    《Nature》 |2019年第7762期|496-499|共4页
  • 作者单位

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|Seoul Natl Univ, Dept Elect & Comp Engn, Seoul, South Korea;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|Changwon Natl Univ, Dept Mech Engn, Chang Won, South Korea;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|FAMU FSU Coll Engn, Dept Mech Engn, Tallahassee, FL 32310 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido, Japan;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA;

    Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA|FAMU FSU Coll Engn, Dept Mech Engn, Tallahassee, FL 32310 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号