首页> 外文期刊>Nature >Universal quantum computation with the exchange interaction
【24h】

Universal quantum computation with the exchange interaction

机译:具有交换相互作用的通用量子计算

获取原文
获取原文并翻译 | 示例
           

摘要

Various physical implementations of quantum computers are being investigated, although the requirements that must be met to make such devices a reality in the laboratory at present involve capabilities well beyond the state of the art. Recent solid-state approaches have used quantum dots, donor-atom nuclear spins or electron spins; in these architectures, the basic two-qubit quantum gate is generated by a tunable exchange interaction between spins (a Heisenberg interaction), whereas the one-qubit gates require control over a local magnetic field. Compared to the Heisenberg operation, the one-qubit operations are significantly slower, requiring substantially greater materials and device complexity—potentially contributing to a detrimental increase in the decoherence rate. Here we introduced an explicit scheme in which the Heisenberg interaction alone suffices to implement exactly any quantum computer circuit. This capability comes at a price of a factor of three in additional qubits, and about a factor of ten in additional two-qubit operations. Even at this cost, the ability to eliminate the complexity of one-qubit operations should accelerate progress towards solid-state implementations of quantum computation.
机译:目前正在研究量子计算机的各种物理实现方式,尽管目前在实验室中使这种设备成为现实必须满足的要求涉及远远超出现有技术水平的能力。最近的固态方法已经使用了量子点,施主原子核自旋或电子自旋。在这些体系结构中,基本的两个量子比特的量子门是通过自旋之间的可调交换相互作用(海森堡相互作用)生成的,而一个量子比特的门则需要控制局部磁场。与海森堡运算相比,单量子位运算要慢得多,需要大量的材料和设备复杂性,这有可能导致退相干率的不利增长。在这里,我们介绍了一个明确的方案,其中仅海森堡相互作用就足以实现任何量子计算机电路。这种能力的代价是额外的量子比特增加了三倍,而额外的两个量子比特运算增加了约十倍。即使以此为代价,消除单量子位运算复杂性的能力也应加速向量子计算的固态实现迈进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号