首页> 外文期刊>Nature >Synaptic Depression Enables Neuronal Gain Control
【24h】

Synaptic Depression Enables Neuronal Gain Control

机译:突触抑制使神经元增益控制

获取原文
获取原文并翻译 | 示例
           

摘要

To act as computational devices, neurons must perform mathematical operations as they transform synaptic and modulatory input into output firing rate. Experiments and theory indicate that neuronal firing typically represents the sum of synaptic inputs, an additive operation, but multiplication of inputs is essential for many computations. Multiplication by a constant produces a change in the slope, or gain, of the input-output relationship, amplifying or scaling down the sensitivity of the neuron to changes in its input. Such gain modulation occurs in vivo, during contrast invariance of orientation tuning, attentional scaling, translation-invariant object recognition, auditory processing and coordinate transformations. Moreover, theoretical studies highlight the necessity of gain modulation in several of these tasks. Although potential cellular mechanisms for gain modulation have been identified, they often rely on membrane noise and require restrictive conditions to work. Because nonlinear components are used to scale signals in electronics, we examined whether synaptic nonlinearities are involved in neuronal gain modulation. We used synaptic stimulation and the dynamic-clamp technique to investigate gain modulation in granule cells in acute slices of rat cerebellum. Here we show that when excitation is mediated by synapses with short-term depression (STD), neuronal gain is controlled by an inhibitory conductance in a noise-independent manner, allowing driving and modulatory inputs to be multiplied together. The nonlinearity introduced by STD transforms inhibition-mediated additive shifts in the input-output relationship into multiplicative gain changes. When granule cells were driven with bursts of high-frequency mossy fibre input, as observed in vivo, larger inhibition-mediated gain changes were observed, as expected with greater STD. Simulations of synaptic integration in more complex neocortical neurons suggest that STD-based gain modulation can also operate in neurons with large dendritic trees. Our results establish that neurons receiving depressing excitatory inputs can act as powerful multiplicative devices even when integration of postsynaptic conductances is linear.
机译:为了充当计算设备,神经元必须执行数学运算,因为神经元将突触和调制输入转换为输出激发速率。实验和理论表明,神经元放电通常代表突触输入的总和,这是一个加法运算,但是输入的乘法运算对于许多计算至关重要。乘以常数会导致输入输出关系的斜率或增益发生变化,从而放大或缩小神经元对其输入变化的敏感度。这种增益调制发生在体内,在方向调整,注意缩放,平移不变的对象识别,听觉处理和坐标转换的对比度不变期间。此外,理论研究强调了在其中一些任务中进行增益调制的必要性。尽管已经确定了潜在的增益调节细胞机制,但它们通常依赖于膜噪声并且需要限制性条件才能起作用。因为非线性组件用于缩放电子设备中的信号,所以我们检查了神经元增益调制中是否涉及突触非线性。我们使用突触刺激和动态钳技术研究大鼠小脑急性切片中颗粒细胞的增益调节。在这里,我们表明,当兴奋是由突触介导的短期抑郁(STD)介导时,神经元增益受抑制传导性的控制,其独立于噪声,从而使驱动输入和调制输入相乘。 STD引入的非线性将抑制介导的输入-输出关系中的加性位移转换为乘法增益变化。如体内观察到的那样,当用高频苔藓纤维输入脉冲驱动颗粒细胞时,观察到较大的抑制介导的增益变化,如预期的更大STD一样。在更复杂的新皮层神经元中突触整合的模拟表明,基于STD的增益调制也可以在具有大型树突树的神经元中起作用。我们的结果表明,即使突触后电导的整合是线性的,接受抑制性兴奋性输入的神经元也可以充当强大的乘法器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号