首页> 外文期刊>Nature >Tailoring light-matter-spin interactions in colloidal hetero-nanostructures
【24h】

Tailoring light-matter-spin interactions in colloidal hetero-nanostructures

机译:调整胶体异质纳米结构中的光-自旋相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The interplay between light and matter is the basis of many fundamental processes and various applications. Harnessing light-matter interactions in principle allows operation of solid state devices under new physical principles: for example, the a.c. optical Stark effect (OSE) has enabled coherent quantum control schemes of spins in semiconductors, with the potential for realizing quantum devices based on spin qubits. However, as the dimension of semiconductors is reduced, light-matter coupling is typically weakened, thus limiting applications at the nanoscale. Recent experiments have demonstrated significant enhancement of nanoscale light-matter interactions, albeit with the need for a high-finesse cavity6'7, ultimately preventing device down-scaling and integration. Here we report that a sizable OSE can be achieved at substantial energy detuning in a cavity-free colloidal metal-semiconductor core-shell hetero-nanostructure, in which the metal surface plasmon is tuned to resonate spectrally with a semiconductor exciton transition. We further demonstrate that this resonantly enhanced OSE exhibits polarization dependence and provides a viable mechanism for coherent ultrafast spin manipulation within colloidal nano-structures. The plasmon-exciton resonant nature further enables tailoring of both OSE and spin manipulation by tuning plasmon resonance intensity and frequency. These results open a pathway for tailoring light-matter-spin interactions through plasmon-exciton resonant coupling in a judiciously engineered nanostructure, and offer a basis for future applications in quantum information processing at the nanoscale. More generally, integrated nanostructures with resonantly enhanced light-matter interactions should serve as a test bed for other emerging fields, including nano-biophotonics and nano-energy.
机译:光与物质之间的相互作用是许多基本过程和各种应用的基础。原则上利用光与物质的相互作用可以使固态设备在新的物理原理下运行:例如,交流电。光学斯塔克效应(OSE)启用了半导体中自旋的相干量子控制方案,并有可能实现基于自旋量子位的量子器件。然而,随着半导体尺寸的减小,光-物质耦合通常被削弱,从而限制了纳米级的应用。最近的实验表明,尽管需要高精细的腔体6'7,但纳米级光-质相互作用的显着增强,最终阻止了器件的缩小和集成。在这里我们报告说,在无腔的胶体金属-半导体核-壳异质纳米结构中,通过实质性的能量失谐可以实现相当大的OSE,其中金属表面等离子体激元被调谐以与半导体激子跃迁发生光谱共振。我们进一步证明,这种共振增强的OSE表现出极化依赖性,并为胶体纳米结构内的相干超快速自旋操纵提供了可行的机制。等离子体激子共振性质还可以通过调整等离子体共振强度和频率来定制OSE和自旋操纵。这些结果为通过明智设计的纳米结构中的等离激子-激子共振耦合定制轻质自旋相互作用提供了途径,并为将来在纳米级量子信息处理中的应用提供了基础。更一般而言,具有共振增强的光-物质相互作用的集成纳米结构应作为其他新兴领域的试验床,包括纳米生物光子学和纳米能量。

著录项

  • 来源
    《Nature》 |2010年第7302期|P.91-95|共5页
  • 作者单位

    Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA;

    rnDepartment of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA;

    rnDepartment of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA;

    rnDepartment of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号