首页> 外文期刊>Nature >Electromagnetically induced transparency with single atoms in a cavity
【24h】

Electromagnetically induced transparency with single atoms in a cavity

机译:腔内单原子的电磁感应透明

获取原文
获取原文并翻译 | 示例
           

摘要

Optical nonlinearities offer unique possibilities for the control of light with light. A prominent example is electromagnetically induced transparency (EIT), where the transmission of a probe beam through an optically dense medium is manipulated by means of a control beam. Scaling such experiments into the quantum domain with one (or just a few) particles of light and matter will allow for the implementation of quantum computing protocols with atoms and photons, or the realization of strongly interacting photon gases exhibiting quantum phase transitions of light. Reaching these aims is challenging and requires an enhanced matter-light interaction, as provided by cavity quantum electrodynamics. Here we demonstrate EIT with a single atom quasi-permanently trapped inside a high-finesse optical cavity. The atom acts as a quantum-optical transistor with the ability to coherently control the transmission of light through the cavity. We investigate the scaling of EIT when the atom number is increased one-by-one. The measured spectra are in excellent agreement with a theoretical model. Merging EIT with cavity quantum electrodynamics and single quanta of matter is likely to become the cornerstone for novel applications, such as dynamic control of the photon statistics of propagating light fields or the engineering of Fock state superpositions of flying light pulses.
机译:光学非线性为用光控制光提供了独特的可能性。一个突出的例子是电磁感应透明性(EIT),其中探测光束通过光致密介质的传输是通过控制光束进行控制的。将这样的实验用一个(或仅几个)光和物质的粒子扩展到量子域中,将允许实现具有原子和光子的量子计算协议,或者实现具有光量子相变的强相互作用的光子气体。达到这些目标是具有挑战性的,并且需要增强的光-光相互作用,如腔量子电动力学所提供的。在这里,我们演示了在高精细光学腔内准永久捕获的单个原子的EIT。原子充当量子光学晶体管,具有相干地控制光通过腔体的传输的能力。我们研究原子数一一增加时EIT的缩放比例。测得的光谱与理论模型非常吻合。将EIT与腔量子电动力学和物质的单个量子相结合很可能会成为新颖应用的基石,例如动态控制传播光场的光子统计或设计飞行光脉冲的Fock状态叠加。

著录项

  • 来源
    《Nature》 |2010年第7299期|755-758|共4页
  • 作者单位

    Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, Sao Paulo, Brazil;

    rnMax-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号