首页> 外文期刊>Nature >Spin crossover and iron-rich silicate melt in the Earth's deep mantle
【24h】

Spin crossover and iron-rich silicate melt in the Earth's deep mantle

机译:自旋交叉和富含铁的硅酸盐在地球深部的地幔中融化

获取原文
获取原文并翻译 | 示例
           

摘要

A melt has greater volume than a silicate solid of the same composition. But this difference diminishes at high pressure, and the possibility that a melt sufficiently enriched in the heavy element iron might then become more dense than solids at the pressures in the interior of the Earth (and other terrestrial bodies) has long been a source of considerable speculation. The occurrence of such dense silicate melts in the Earth's lowermost mantle would carry important consequences for its physical and chemical evolution and could provide a unifying model for explaining a variety of observed features in the core-mantle boundary region. Recent theoretical calculations combined with estimates of iron partitioning between (Mg,Fe)SiO_3 perovskite and melt at shallower mantle conditions suggest that melt is more dense than solids at pressures in the Earth's deepest mantle, consistent with analysis of Shockwave experiments. Here we extend measurements of iron partitioning over the entire mantle pressure range, and find a precipitous change at pressures greater than ~76 GPa, resulting in strong iron enrichment in melts. Additional X-ray emission spectroscopy measurements on (Mg_(0.95)Fe_(0.05))SiO_3 glass indicate a spin collapse around 70 GPa, suggesting that the observed change in iron partitioning could be explained by a spin crossover of iron (from high-spin to low-spin) in silicate melt. These results imply that (Mg,Fe)SiO_3 liquid becomes more dense than coexisting solid at ~l,800km depth in the lower mantle. Soon after the Earth's formation, the heat dissipated by accretion and internal differentiation could have produced a dense melt layer up to ~1,000 km in thickness underneath the solid mantle. We also infer that (Mg,Fe)SiO_3 perovskite is on the liquidus at deep mantle conditions, and predict that fractional crystallization of dense magma would have evolved towards an iron-rich and silicon-poor composition, consistent with seismic inferences of structures in the core-mantle boundary region.
机译:熔体的体积大于相同组成的硅酸盐固体的体积。但是这种差异在高压下会减小,并且在地球内部(和其他地面物体)的压力下,足够富含重元素铁的熔体可能比固体密度更高的可能性长期以来一直是可观的。投机。这种最稠密的硅酸盐熔体在地球最下层地幔中的发生,将对其地球的物理和化学演化产生重要影响,并可为解释岩心-地幔边界区域的各种观测特征提供一个统一的模型。最近的理论计算与在较浅地幔条件下(Mg,Fe)SiO_3钙钛矿与熔体之间铁分配的估计值相结合,表明在地球最深地幔的压力下,熔体比固体密度更高,这与Shockwave实验的分析一致。在这里,我们将铁分配的测量范围扩展到整个地幔压力范围,并发现在大于〜76 GPa的压力下出现急剧变化,从而导致铁水在熔体中富集。在(Mg_(0.95)Fe_(0.05))SiO_3玻璃上进行的其他X射线发射光谱测量表明,自旋塌陷约为70 GPa,这表明观察到的铁分配变化可以解释为铁的自旋交叉(从高自旋到低速旋转)。这些结果表明(Mg,Fe)SiO_3液体在下地幔的〜1800 km深度处比共存的固体更稠密。地球形成后不久,由于吸积和内部分化而散发的热量可能在固态地幔下产生了一个厚约1000 km的致密熔体层。我们还推断出(Mg,Fe)SiO_3钙钛矿在深地幔条件下处于液相线,并预测致密岩浆的分步结晶将演化为富铁和贫硅的成分,与该构造中的地震推论一致。核心-幔边界区域。

著录项

  • 来源
    《Nature》 |2011年第7346期|p.199-202|共4页
  • 作者单位

    Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551,Japan,Department of Earth and Planetary Sciences, University of Tokyo, Bunkyo, Tokyo 113-0033,Japan;

    Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551,Japan,Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Scienceand Technology,Yokosuka.Kanagawa 237-0061,Japan;

    Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551,Japan;

    Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551,Japan,Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Scienceand Technology,Yokosuka.Kanagawa 237-0061,Japan;

    Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA;

    Department of Materials, Physics and Energy Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan;

    National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;

    National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号