首页> 外文期刊>Nature >Formation of monatomic metallic glasses through ultrafast liquid quenching
【24h】

Formation of monatomic metallic glasses through ultrafast liquid quenching

机译:通过超快液体淬火形成单原子金属玻璃

获取原文
获取原文并翻译 | 示例
           

摘要

It has long been conjectured that any metallic liquid can be vitrified into a glassy state provided that the cooling rate is sufficiently high. Experimentally, however, vitrification of single-element metallic liquids is notoriously difficult. True laboratory demonstration of the formation of monatomic metallic glass has been lacking. Here we report an experimental approach to the vitrification of monatomic metallic liquids by achieving an unprecedentedly high liquid-quenching rate of 10~(14) K s~(-1). Under such a high cooling rate, melts of pure refractory body-centred cubic (bcc) metals, such as liquid tantalum and vanadium, are successfully vitrified to form metallic glasses suitable for property interrogations. Combining in situ transmission electron microscopy observation and atoms-to-continuum modelling, we investigated the formation condition and thermal stability of the monatomic metallic glasses as obtained. The availability of monatomic metallic glasses, being the simplest glass formers, offers unique possibilities for studying the structure and property relationships of glasses. Our technique also shows great control over the reversible vitrification-crystallization processes, suggesting its potential in micro-electromechanical applications. The ultrahigh cooling rate, approaching the highest liquid-quenching rate attainable in the experiment, makes it possible to explore the fast kinetics and structural behaviour of supercooled metallic liquids within the nanosecond to picosecond regimes.
机译:长期以来一直认为,只要冷却速度足够高,任何金属液体都可以玻璃化成玻璃态。然而,从实验上讲,单元素金属液体的玻璃化非常困难。一直缺乏单原子金属玻璃形成的真实实验室证明。在这里,我们报告了一种通过实现空前高的10〜(14)K s〜(-1)液体淬火速率来对单原子金属液体进行玻璃化的实验方法。在如此高的冷却速度下,成功地玻璃化了纯难熔的以人体为中心的立方(bcc)金属(例如液态钽和钒)的玻璃,从而形成了适合性能查询的金属玻璃。结合原位透射电子显微镜观察和原子-连续谱模型,我们研究了所获得的单原子金属玻璃的形成条件和热稳定性。单原子金属玻璃是最简单的玻璃成型机,它为研究玻璃的结构和性能关系提供了独特的可能性。我们的技术还显示出对可逆的玻璃化结晶过程的强大控制,表明了其在微机电应用中的潜力。超高冷却速率接近实验中可获得的最高液体淬灭速率,这使得探索纳秒至皮秒范围内的过冷金属液体的快速动力学和结构行为成为可能。

著录项

  • 来源
    《Nature》 |2014年第7513期|177-180|共4页
  • 作者单位

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;

    School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, Virginia 22030, USA, Center for High Pressure Science and Technology Advanced Research, Shanghai 201203,China;

    Department of Materials Science and Engineering and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China;

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号