首页> 外文期刊>Nature >Small-scale dynamo magnetism as the driver for heating the solar atmosphere
【24h】

Small-scale dynamo magnetism as the driver for heating the solar atmosphere

机译:小型发电机磁作为驱动太阳大气的动力

获取原文
获取原文并翻译 | 示例
           

摘要

The long-standing problem of how the solar atmosphere is heated has been addressed by many theoretical studies, which have stressed the relevance of two specific mechanisms, involving magnetic reconnection and waves, as well as the necessity of treating the chromosphere and corona together(1-7). But a fully consistent model has not yet been constructed and debate continues, in particular about the possibility of coronal plasma being heated by energetic phenomena observed in the chromosphere(2,3,8-11). Here we report modelling of the heating of the quiet Sun, in which magnetic fields are generated by a subphotospheric fluid dynamo intrinsically connected to granulation. We find that the fields expand into the chromosphere, where plasma is heated at the rate required to match observations (4,500 watts per square metre) by small-scale eruptions that release magnetic energy and drive sonic motions. Some energetic eruptions can even reach heights of 10 million metres above the surface of the Sun, thereby affecting the very low corona. Extending the model by also taking into account the vertical weak network magnetic field allows for the existence of a mechanism able to heat the corona above, while leaving unchanged the physics of chromospheric eruptions. Such a mechanism rests on the eventual dissipation of Alfven waves generated inside the chromosphere and that carry upwards the required energy flux of 300 watts per square metre. The model shows a topologically complex magnetic field of 160 gauss on the Sun's surface, agreeing with inferences obtained from spectropolarimetric observations(12-14), chromospheric features (contributing only weakly to the coronal heating) that can be identified with observed spicules(9) and blinkers(10,11), and vortices that may be possibly associated with observed solar tornadoes(8).
机译:许多理论研究已经解决了长期存在的太阳大气被加热的问题,这些研究强调了两个特定机制的相关性,包括磁重联和波,以及必须同时处理色球和电晕(1)。 -7)。但是还没有建立一个完全一致的模型,并且争论仍在继续,特别是关于在色球层中观察到的高能现象加热冠状血浆的可能性(2,3,8-11)。在这里,我们报告了对安静太阳的加热进行的建模,在该模型中,磁场是由固有地与造粒连接的亚光圈流体发电机产生的。我们发现磁场扩展到了色球层,在该层中,通过释放电磁能并驱动声波运动的小规模爆发,以与观测值(每平方米4,500瓦)相匹配的速率加热等离子体。一些高能喷发甚至可以达到太阳表面上方1000万米的高度,从而影响极低的日冕。通过还考虑垂直弱网络磁场来扩展模型,允许存在一种能够加热上方电晕的机制,同时保持色球层喷发的物理性质不变。这种机制取决于色球内部产生的Alfven波的最终消散,并且向上携带所需的每平方米300瓦的能量通量。该模型显示了太阳表面上160高斯的拓扑复杂磁场,这与从分光极谱观测获得的推论(12-14),色球层特征(仅对冠冕加热的贡献不大)相吻合(可以通过观察到的针刺来确定)(9)。和眨眼(10,11),以及可能与观测到的太阳龙卷风(8)有关的漩涡。

著录项

  • 来源
    《Nature》 |2015年第7555期|188-191|共4页
  • 作者单位

    Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France;

    Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France;

    Univ Paris 07, Ctr Etud Saclay, AIM Unite Mixte Rech CEA CNRS, UMR 7158, F-91191 Gif Sur Yvette, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号