首页> 外文期刊>Nature >Visible-frequency hyperbolic metasurface
【24h】

Visible-frequency hyperbolic metasurface

机译:可视双曲形超表面

获取原文
获取原文并翻译 | 示例
           

摘要

Metamaterials are artificial optical media composed of subwavelength metallic and dielectric building blocks that feature optical phenomena not present in naturally occurring materials(1-7). Although they can serve as the basis for unique optical devices that mould the flow of light in unconventional ways, three-dimensional metamaterials suffer from extreme propagation losses(8,9). Two-dimensional metamaterials (metasurfaces) such as hyperbolic metasurfaces for propagating surface plasmon polaritons(10,11) have the potential to alleviate this problem. Because the surface plasmon polaritons are guided at a metal-dielectric interface (rather than passing through metallic components), these hyperbolic metasurfaces have been predicted to suffer much lower propagation loss while still exhibiting optical phenomena akin to those in three-dimensional metamaterials. Moreover, because of their planar nature, these devices enable the construction of integrated metamaterial circuits as well as easy coupling with other optoelectronic elements. Here we report the experimental realization of a visible-frequency hyperbolic metasurface using single-crystal silver nanostructures defined by lithographic and etching techniques. The resulting devices display the characteristic properties of metamaterials, such as negative refraction(1-5) and diffraction-free propagation(6,7), with device performance greatly exceeding those of previous demonstrations. Moreover, hyperbolic metasurfaces exhibit strong, dispersion-dependent spin-orbit coupling, enabling polarization-and wavelength-dependent routeing of surface plasmon polaritons and two-dimensional chiral optical components(12-15). These results open the door to realizing integrated optical meta-circuits, with wide-ranging applications in areas from imaging and sensing to quantum optics and quantum information science.
机译:超材料是由亚波长金属和介电结构块组成的人造光学介质,其特征是天然材料中不存在的光学现象(1-7)。尽管它们可以作为独特的光学器件的基础,这些器件以非常规的方式塑造光的流动,但三维超材料却遭受了极大的传播损耗(8,9)。二维超材料(元表面),例如用于传播表面等离激元极化子的双曲线超表面(10,11)有可能缓解这一问题。由于表面等离激元极化子在金属-电介质界面处引导(而不是通过金属组件),因此已预测这些双曲线超表面的传播损失要低得多,同时仍表现出类似于三维超材料的光学现象。而且,由于它们的平面性质,这些器件使得能够构造集成的超材料电路并且易于与其他光电元件耦合。在这里,我们报告了使用单晶银纳米结构通过光刻和蚀刻技术定义的可见频率双曲线超表面的实验实现。所得器件显示出超材料的特性,例如负折射(1-5)和无衍射传播(6,7),其器件性能大大超过了先前的演示。而且,双曲形的超表面表现出强的,依赖于色散的自旋轨道耦合,使得表面等离激元极化子和二维手性光学组件能够实现偏振和波长相关的路由(12-15)。这些结果为实现集成光元电路打开了大门,在从成像和传感到量子光学和量子信息科学等领域都有广泛的应用。

著录项

  • 来源
    《Nature》 |2015年第7555期|192-196|共5页
  • 作者单位

    Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA|Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA;

    Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA|MIT, Dept Phys, Cambridge, MA 02139 USA;

    Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA|Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA|Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号