首页> 外文期刊>Nature >Measurement noise 100 times lower than the quantum-projection limit using entangled atoms
【24h】

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

机译:使用纠缠原子的测量噪声比量子投影极限低100倍

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum metrology uses quantum entanglement-correlations in the properties of microscopic systems-to improve the statistical precision of physical measurements(1). When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million Rb-87 atoms in their 'clock' states. The ensemble is 20.1 +/- 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 +/- 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers(2,3). We infer entanglement of more than 680 +/- 35 particles in the atomic ensemble. Applications include atomic clocks(4), inertial sensors(5), and fundamental physics experiments such as tests of general relativity(6) or searches for electron electric dipole moment(7). To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 +/- 0.3 decibels (11-fold), limited by the phase noise of our microwave source.
机译:量子计量学在微观系统的性质中使用了量子纠缠相关性-以提高物理测量的统计精度(1)。在测量信号(例如光束的相移或原子态)时,由于与不相关的探针粒子计数相关的噪声,对可达到的精度产生了明显的限制。这种噪声通常称为散粒噪声或投射噪声,会引起相位分辨率的标准量子极限(SQL)。但是,可以通过缠结探针颗粒将其降低到基本的海森堡极限。尽管在各种物理系统中取得了相当大的实验进展,但是仍然存在一个问题,即这些方法是否可以达到与优化的常规(非纠缠)系统相比性能优越的水平。在这里,我们演示了一种方法,该方法使用一半的Rb-87原子处于“时钟”状态,实现了前所未有的计量改进水平。通过基于光腔的测量,旋压压缩的合音为20.1 +/- 0.3分贝(100倍)。我们直接解决了SQL以外由微波引起的小旋转18.5 +/- 0.3分贝(70倍)的问题。尽管原子序数较低,但通过该设备实现的147微弧度的单脉冲相位分辨率要比最佳工程冷原子传感器的单脉冲相位分辨率要好(2,3)。我们推断出原子团中有680 +/- 35个以上的粒子纠缠。应用包括原子钟(4),惯性传感器(5)和基础物理实验,例如广义相对论的测试(6)或搜索电子偶极矩(7)。为此,我们演示了原子钟测量,其量子增强为10.5 +/- 0.3分贝(11倍),受我们的微波源的相位噪声限制。

著录项

  • 来源
    《Nature》 |2016年第7587期|505-508|共4页
  • 作者单位

    Stanford Univ, Dept Phys, Stanford, CA 94305 USA;

    Stanford Univ, Dept Phys, Stanford, CA 94305 USA;

    Stanford Univ, Dept Phys, Stanford, CA 94305 USA;

    Stanford Univ, Dept Phys, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号