...
首页> 外文期刊>Nature >Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking
【24h】

Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking

机译:通过动能耦合的反对称对称破坏实现最大的Rashba类自旋分裂

获取原文
获取原文并翻译 | 示例
           

摘要

Engineering and enhancing the breaking of inversion symmetry in solids-that is, allowing electrons to differentiate between 'up' and 'down'-is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing(1,2). Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies-that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin-and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like(3,4) spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2-and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like(3,4) spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.
机译:工程学和增强固体中反演对称性的破坏(也就是说,允许电子在“向上”和“向下”之间进行区分)是凝聚态物理和材料科学的关键目标,因为它可以用于稳定状态为具有根本的兴趣,也有潜在的实际应用。例子包括用于存储设备的改良铁电体和承载Majorana零模式进行量子计算的材料(1,2)。尽管在几种晶体环境中(例如在表面和界面处)自然会破坏反转对称性,但要最大程度地提高此效应对目标电子态的影响仍然是一个挑战。在这里,我们提出了一种机制,该机制可实现反转对称性与迭代表面电子之间更大程度的耦合,而这种耦合通常无法实现。关键因素是表面跳变能量的明显不对称性,即动能耦合的反对称性破裂,其能量尺度是带宽的很大一部分。使用自旋和角度分辨光发射光谱,我们证明了这种强大的反转对称性断裂,与自旋轨道相互作用结合时,可以介导比通常预期的大得多的类似于Rashba的(3,4)自旋分裂。我们实现的反转对称破坏的能级如此之大,以致于铜铁矿氧化物的CoO2和RhO2衍生的表面态的自旋分裂受3d和4d过渡金属的全原子自旋轨道耦合控制,导致一些最大的已知Rashba-like(3,4)自旋分裂。促进带宽缩放的反转对称性破坏的核心结构构建块是许多材料所共有的。因此,我们的发现为创造自旋织构态提供了机会,并提出了在氧化物和其他材料类别的设计者异质结构中进行反对称对称破坏的界面控制的途径。

著录项

  • 来源
    《Nature》 |2017年第7673期|492-496|共5页
  • 作者单位

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland|Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany;

    Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany;

    Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany;

    Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland|Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England;

    Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany;

    Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany|Heidelberg Univ, Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany;

    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England;

    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England;

    CNR, IOM, Lab TASC, Area Sci Pk,SS 14,Km 163-5, I-34149 Trieste, Italy;

    CNR, IOM, Lab TASC, Area Sci Pk,SS 14,Km 163-5, I-34149 Trieste, Italy;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland|Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany;

    Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号