...
首页> 外文期刊>Mineralium Deposita >Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany
【24h】

Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany

机译:约会多次叠印锡矿化花岗岩-来自德国埃尔兹比奇的例子

获取原文
获取原文并翻译 | 示例
           

摘要

Granites and primary tin mineralization in the Erzgebirge were dated using (1) conventional U–Pb dating of uraninite inclusions in mica, (2) Rb–Sr dating of inclusions in quartz that represent highly evolved melts, (3) Re–Os dating of magmatic–hydrothermal molybdenite, and (4) chemical Th–U–Pb dating of uraninite. Conventional isotope dilution and thermal ion mass spectrometry and chemical Th–U–Pb dating of uraninite in granites from the Ehrenfriedersdorf mining district provide ages of 323.9 ± 3.5 Ma (2σ; Greifenstein granite) and 320.6 ± 1.9 and 319.7 ± 3.4 Ma (2σ, both Sauberg mine), in agreement with U–Pb apatite ages of 323.9 ± 2.9 and 317.3 ± 1.6 Ms (2σ, both Sauberg mine). Rb–Sr analysis of melt inclusions from Zinnwald gives highly radiogenic Sr isotopic compositions that, with an assumed initial Sr isotopic composition, permit calculation of precise ages from single inclusions. The scatter of the data indicates that some quartz-hosted melt inclusions have been affected by partial loss of fluid exsolved from the melt inclusion. Re–Os dating of two molybdenite samples from Altenberg provides ages of 323.9 ± 2.5 and 317.9 ± 2.4 Ma (2σ). Together with age data from the literature, our new ages demonstrate that primary tin mineralization and the emplacement of the large Sn-specialized granites in the Erzgebirge fall in a narrow range between 318 and 323 Ma. Primary Sn mineralization occurred within a short interval during post-collisional collapse of the Variscan orogen and was essentially synchronous over the entire Erzgebirge. In contrast to earlier claims, no systematic age difference between granites of the eastern and western Erzgebirge was established. Furthermore, our data do not support a large age range for Late-Variscan granites of the Erzgebirge (330–290 Ma), as has been previously suggested.
机译:Erzgebirge中的花岗岩和初级锡矿化使用(1)云母中铀矿夹杂物的常规U–Pb定年,(2)代表高度演化熔体的石英中夹杂物的Rb–Sr定年,(3)Re-Os定年岩浆热液辉钼矿,以及(4)铀矿的化学Th–U–Pb定年。 Ehrenfriedersdorf矿区花岗岩中的常规同位素稀释和热离子质谱法以及铀矿中化学铀-铀-铅定年的年龄分别为323.9±3.5 Ma(2σ; Greifenstein花岗岩)和320.6±1.9和319.7±3.4 Ma(2σ, Sauberg矿)和U–Pb磷灰石年龄分别为323.9±2.9和317.3±1.6 Ms(均为2σ,Sauberg矿均为2σ)。对津纳瓦尔德(Zinnwald)熔体夹杂物的Rb-Sr分析得出了高放射性的Sr同位素组成,假定初始的Sr同位素组成为准,则可以从单个夹杂物计算出精确的年龄。数据的分散表明,某些石英基质熔体夹杂物已受到从熔体夹杂物中溶出的流体部分损失的影响。对两个来自Altenberg的辉钼矿样品的Re-Os年龄分别为323.9±2.5和317.9±2.4 Ma(2σ)。连同文献中的年龄数据一起,我们的新年龄表明,主要的锡矿化作用和Erzgebirge中大量Sn特殊的花岗岩的位置介于318 Ma至323 Ma之间。原始的锡矿化发生在瓦里斯坎造山带碰撞后的短时间内,并在整个厄尔士山脉上基本同步。与先前的主张相反,东部和西部Erzgebirge的花岗岩之间没有系统的年龄差异。此外,我们的数据不支持厄尔士山脉的晚期瓦里斯坎花岗岩(330-290 Ma)的较大年龄范围,如先前所建议的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号