首页> 外文期刊>Microfluidics and nanofluidics >3D visualization of convection patterns in lab-on-chip with open microfluidic outlet
【24h】

3D visualization of convection patterns in lab-on-chip with open microfluidic outlet

机译:具有开放式微流出口的芯片实验室对流模式的3D可视化

获取原文
获取原文并翻译 | 示例
           

摘要

Open-outlet microfluidics is getting more and more attention, thanks to the generation of capillarity-driven flows which simplify the connection with the macro-world. It is known that convection flows are generated at the interface with air, i.e., the meniscus. Several works have investigated evaporation-induced convection, but its effect on particle position control in open-outlet biodevices is still not characterized. In this paper, we present the results of 3D measurement of particle traces near the meniscus in an open-outlet vertical 400 μm micro-channel filled with a water-based saline solution. Using a standard optical microscope and a system of mirrors, we observe the 3D position of individual micro-beads floating in the solution, in a way akin to particle image velocimetry technique. A single vortex is generated at the meniscus and occupies the whole region under observation at a distance of 1.5-2.7 mm from the meniscus. The generation of the convection pattern and the vortex rotational speed are described. The convection patterns disappear when evaporation is inhibited, while both the vortex generation and the rotational speed are faster for highly saline solutions. These results are relevant to the design of biochips which require control of the particle position in a fluid since they emphasize that in open-outlet microfluidic systems not only the gravitational fall but also the convection drag must be counteracted.
机译:开放式微流控技术越来越受到人们的关注,这要归功于毛细驱动流的产生,它简化了与宏观世界的联系。已知在与空气,即弯月面的界面处产生对流。几项研究已经研究了蒸发引起的对流,但是其对开放式出口生物设备中的颗粒位置控制的影响仍未表征。在本文中,我们介绍了在充满水基盐溶液的开放式垂直400μm微通道中,弯月面附近的微粒痕迹的3D测量结果。使用标准的光学显微镜和反射镜系统,我们以类似于粒子图像测速技术的方式观察溶液中漂浮的单个微珠的3D位置。在弯月面会产生一个涡旋,并在离弯月面1.5-2.7毫米处观察时占据整个区域。描述了对流模式的产生和涡旋转速。当抑制蒸发时,对流模式消失,而对于高盐溶液,涡流的产生和旋转速度都更快。这些结果与需要控制流体中颗粒位置的生物芯片的设计有关,因为它们强调在开放式微流体系统中,不仅重力下降而且对流阻力都必须抵消。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号