首页> 外文期刊>Mechanics of materials >The average Young's modulus as a physical quantity for describing the depth-dependent mechanical properties of cells
【24h】

The average Young's modulus as a physical quantity for describing the depth-dependent mechanical properties of cells

机译:平均杨氏模量作为描述细胞深度依赖性机械性能的物理量

获取原文
获取原文并翻译 | 示例
           

摘要

Hertzian mechanics is a useful theoretical tool for data processing regarding Atomic Force Microscopy (AFM) nanoindentation experiments on cells and other biological samples. A common approach that is usually followed in the literature is to fit the experimentally obtained data to the equations provided by Hertzian analysis. However, there are many different approaches regarding the selection of the maximum indentation depth even for the same biological sample and many of them depend on the experience of the AFM-user. In addition, the results as provided by different research groups on the same sample (e.g. the same cell type) usually vary significantly. Thus, it is crucial to develop novel user-independent methods for assessing the mechanical properties of cells. In this paper a new approach, based on the work done by the indenter, is proposed for data processing. At first, a hypothetical nanoindentation experiment on an elastic half space is assumed in which the maximum indentation depth and the work done by the indenter are equal to the actual experiment. The Young's modulus of the hypothetical ideal material is the actual sample's average Young's modulus. In addition, the function of the average Young's modulus with respect to the indentation depth is introduced to reveal the depth dependent mechanical properties of biological samples. Secondly, the proposed methodology was applied on experimental data from fibroblasts and H4, A172 human glioma cells. The results showed a 'softening' of cells as the indentation depth increases. However, for big indentation depths the average Young's modulus always reaches an asymptotic value (the overall average Young's modulus). Thus, the overall average Young's modulus can be used for comparing the results of AFM nanoindentation experiments on cells between different research groups. In addition, the average Young's modulus function can also reveal the maximum value of the indentation depth that should not be surpassed in order to avoid a substrate effect. The analysis proposed by this paper can be applied to any biological sample using conical or spherical indenters. The great advantage of the proposed by this paper technique is that it does not require a linear elastic response of the sample, thus it is appropriate for the mechanical nano-characterization of highly heterogeneous biological materials.
机译:Hertzian Mechence是关于关于细胞和其他生物样品的原子力显微镜(AFM)纳米狭窄实验的数据处理的有用理论工具。通常遵循文献中通常遵循的常见方法是将实验获得的数据符合赫兹分析提供的等式。然而,即使对于相同的生物学样本,也存在许多关于选择最大压痕深度的不同方法,并且其中许多依赖于AFM用户的经验。另外,在同一样品(例如相同细胞类型)上的不同研究基团提供的结果通常显着变化。因此,开发用于评估细胞机械性能的新型用户无关的方法至关重要。在本文中,提出了一种新的方法,基于缩进的工作,以用于数据处理。首先,假设在弹性半空间上的假设纳米凸缘实验,其中压痕深度和由压缩完成的工作等于实际实验。假设理想材料的杨氏模量是实际样本的平均杨氏模量。另外,引入了平均杨氏模量相对于压痕深度的功能,以揭示生物样品的深度依赖性机械性能。其次,将所提出的方法应用于来自成纤维细胞和H4,A172人胶质瘤细胞的实验数据。结果显示了细胞的“软化”,因为压痕深度增加。然而,对于大缩进深度,平均杨氏模量总是达到渐近值(整体平均杨氏模量)。因此,总体平均杨氏模量可用于比较AFM纳米狭窄实验对不同研究组之间细胞的结果。此外,平均杨氏模量函数还可以揭示不应超越的压痕深度的最大值,以避免基板效应。本文提出的分析可以应用于使用锥形或球形压头的任何生物样品。本文提出的优点在于,它不需要样品的线性弹性响应,因此适用于高度异质的生物材料的机械纳米表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号