...
首页> 外文期刊>Mechanical systems and signal processing >Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction
【24h】

Simultaneous finite element analysis of circuit-integrated piezoelectric energy harvesting from fluid-structure interaction

机译:从流固耦合中收集电路集成压电能量的同时有限元分析

获取原文
获取原文并翻译 | 示例
           

摘要

Flow-driven piezoelectric energy harvesting is a strongly coupled multiphysics phenomenon that involves complex three-way interaction between the fluid flow, the electromechanical effect of the piezoelectric material mounted on a deformable substrate structure and the controlling electrical circuit. High fidelity computational solution approaches are essential for the analysis of flow-driven energy harvesters in order to capture the main physical aspects of the coupled problem and to accurately predict the power output of a harvester. While there are some phenomenological and numerical models for flow-driven harvesters reported in the literature, a fully three-dimensional strongly coupled model has not yet been developed, especially in the context of flow-driven energy harvesting. The weighted residuals method is applied to establish a mixed integral equation describing the incompressible Newtonian flow, elastic substrate structure, piezoelectric patch, equipotential electrode and attached electric circuit that form the multiphysics fluid-structure interaction problem. A monolithic numerical solution method is derived that provides consistent and simultaneous solution to all physical fields as well as to fluid mesh deformation. The approximate solution is based on a mixed space-time finite element discretization with static condensation of the auxiliary fields. The discontinuous Galerkin method is utilized for integrating the monolithic model in time. The proposed solution scheme is illustrated in the example of a lid driven cavity with a flexible piezoelectric bottom wall, demonstrating quantification of the amount of electrical energy extractable from fluid flow by means of a piezoelectric harvester device. The results indicate that in order to make reliable predictions on the power output under varying operational states, the realization of strong multiphysics coupling is required for the mathematical model as well as the numerical solution scheme to capture the characteristics of flow-driven energy harvesters. (C) 2018 Elsevier Ltd. All rights reserved.
机译:流动驱动的压电能量收集是一种强耦合的多物理场现象,涉及流体流,安装在可变形基板结构上的压电材料与控制电路之间的复杂三向相互作用。高保真度计算解决方案方法对于分析流动驱动的能量收集器至关重要,以便捕获耦合问题的主要物理方面并准确预测收集器的功率输出。尽管文献中报道了一些有关流动驱动的收割机的现象学和数值模型,但尚未开发出完全三维的强耦合模型,尤其是在流动驱动的能量收集方面。应用加权残差法建立一个混合积分方程,描述不可压缩的牛顿流,弹性基底结构,压电膜片,等电位电极和附着的电路,这些问题构成了多物理场流固耦合问题。推导了一种整体数值解方法,该方法为所有物理场以及流体网格变形提供了一致且同时的解决方案。近似解基于混合时空有限元离散化和辅助场的静态凝聚。不连续的Galerkin方法用于及时整合整体模型。在具有柔性压电底壁的盖子驱动腔的示例中说明了所提出的解决方案,该过程演示了通过压电收集器装置可量化的从流体流中提取的电能量。结果表明,为了对变化的工作状态下的功率输出做出可靠的预测,数学模型以及数值解方案需要强大的多物理场耦合来实现,以捕获流动驱动的能量收集器的特性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号