首页> 外文期刊>Mathematics and computers in simulation >Finite volume numerical simulation of viscoelastic flows in general orthogonal coordinates
【24h】

Finite volume numerical simulation of viscoelastic flows in general orthogonal coordinates

机译:一般正交坐标系下粘弹性流动的有限体积数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This work reports on numerical simulations of unsteady two- and three-dimensional viscoelastic flows in complex geometries. The Navier-Stokes solver is designed for general orthogonal grids in two dimensions and a Cartesian description in the spanwise direction. The conservation equations are written in primitive pressure-velocity variables, making use of the physical curvilinear lengths and contravariant velocities [S.B. Pope, The calculation of turbulent recirculating flows in general orthogonal coordinates, J. Comp. Phy s. 26 (1978) 197-217]. The space discretization is finite volume, with the pressure at the center of the control volumes and the velocity components staggered at the center of the cell faces. The conservative advective terms are discretized with a quadratic upwind scheme (QUICK). The extra advective terms induced by coordinate curvature are treated explicitly as integral volumes evaluated at the cell centers. The time advancement of the solution follows from an explicit decoupling procedure [F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965) 2182-2189]. The Adams-Bashforth level 2 scheme is used to evaluate advection, curvature and viscous terms. This discretization produces a symmetric and positive definite matrix for the pressure. The overall formulation is second order accurate in space, first-order in time. To model the viscoelastic flow, the Phan-Thien-Tanner (PTT) constitutive equation is considered. Results are presented for 2D and 3D configurations (flow past a cylinder and flow through a U-curved channel), both presenting recirculations and secondary flows. This contribution demonstrates the versatility of the formulation for 2D and 3D flows with curved boundaries, and its easy implementation starting from a Cartesian description.
机译:这项工作报告了复杂几何形状中非稳态二维和三维粘弹性流动的数值模拟。 Navier-Stokes求解器设计用于二维的通用正交网格以及在翼展方向上的笛卡尔描述。守恒方程写在原始压力速度变量中,利用了物理曲线长度和逆变速度[S.B.教皇,在一般正交坐标系中湍流再循环流动的计算,J。Comp。 y 26(1978)197-217]。空间离散是有限的体积,压力在控制体积的中心,速度分量在单元面的中心交错。保守的对流项通过二次迎风方案(QUICK)离散化。由坐标曲率引起的额外对流项明确地视为在单元中心评估的积分体积。解决方案的时间提前来自一个明确的解耦程序[F.H. Harlow,J.E. Welch,具有自由表面的随时间变化的粘性不可压缩流体的数值计算,物理流体8(1965)2182-2189]。 Adams-Bashforth 2级方案用于评估对流,曲率和粘性项。这种离散化为压力产生了一个对称的正定矩阵。总体上讲,该公式在空间上是二阶的,在时间上是一阶的。为了模拟粘弹性流动,考虑了Phan-Thien-Tanner(PTT)本构方程。给出了2D和3D配置(流过圆柱体并流过U形弯曲通道)的结果,均显示了再循环和二次流。这一贡献证明了用于具有弯曲边界的2D和3D流动的配方的多功能性,以及从笛卡尔描述开始的易于实现的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号