...
首页> 外文期刊>Materials Science and Engineering >Significance of Si impurities on exceptional room-temperature superplasticity in a high-purity Zn-22%Al alloy
【24h】

Significance of Si impurities on exceptional room-temperature superplasticity in a high-purity Zn-22%Al alloy

机译:Si杂质对高纯度Zn-22%Al合金超常室温超塑性的意义

获取原文
获取原文并翻译 | 示例
           

摘要

Recent numerous studies demonstrated the advantages of producing bulk metals with submicrometer grain sizes which provide the opportunity to demonstrate improved mechanical characteristics including superplastic properties. Besides the effort, although the impurity may cause low ductility due to grain boundary segregation, there are limited studies to date on the influence of general impurities upon flow behavior of conventional superplastic materials. Accordingly, the present report demonstrates the significance of Si impurity on superplastic properties in an ultrafine-grained high-purity Zn-22%A1 eutectoid alloy at room temperature. The alloy was prepared to include different levels of Si contents up to 1500 ppm in the high-purity alloy and the consistent fine grain sizes of ~0.60μm were introduced through a series of solutionizing followed by cold rolling. Tensile testing showed an occurrence of excellent room-temperature superplasticity and the maximum elongation of 500% was recorded at an optimal superplastic strain rate of 1.0 × 10~(-3) s~(-1) in the alloy with less Si. Increasing Si contents reduced ductility without changing the strain rate sensitivity, thereby implying the consistency in the deformation mechanism for superplastic flow but the difference in the fracture mode. The present analysis estimates a threshold stress and demonstrate the validity of applying the conventional superplastic relationship for depicting the room-temperature superplastic flow in the high-purity Zn-22%A1 alloy. Moreover, the separate fracture modes are proposed for the alloy with increasing Si impurity contents by taking fractographs after superplastic elongations.
机译:最近的大量研究表明,生产具有亚微米级晶粒度的散装金属的优势为提供改进的机械特性(包括超塑性)提供了机会。除了努力之外,尽管杂质可能由于晶界偏析而导致延展性降低,但是迄今为止,关于一般杂质对常规超塑性材料的流动行为的影响的研究还很有限。因此,本报告证明了在室温下,硅杂质对超细晶粒高纯度Zn-22%A1共析合金中超塑性的重要性。制备该合金时,高纯度合金中的Si含量高达1500 ppm,并通过一系列固溶处理然后冷轧引入一致的〜0.60μm细晶粒尺寸。拉伸试验表明,在Si含量较低的合金中,最佳超塑性应变速率为1.0×10〜(-3)s〜(-1)时,室温超塑性的发生率最高,最大伸长率为500%。 Si含量的增加在不改变应变速率灵敏度的情况下降低了延展性,从而暗示了超塑性流的变形机理的一致性,但暗示了断裂模式的差异。本分析估算了阈值应力,并证明了应用常规超塑性关系描述高纯度Zn-22%A1合金中室温超塑性流动的有效性。此外,通过超塑性拉伸后的分数线照相,提出了具有增加的Si杂质含量的合金的单独断裂模式。

著录项

  • 来源
    《Materials Science and Engineering》 |2015年第1期|47-56|共10页
  • 作者单位

    Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan;

    Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan,Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, South Korea,Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453, USA;

    Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan;

    Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan;

    Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan;

    Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fracture; Impurity; Superplasticity; Ultrafine grains; Zn-Al alloy;

    机译:断裂;不纯;超塑性超细晶粒;锌铝合金;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号