...
首页> 外文期刊>Materials Science and Engineering >Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel
【24h】

Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel

机译:温度对高锰C + N合金奥氏体不锈钢变形机制和力学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Recently developed high-manganese stainless Fe-Cr-Mn-CN steels exhibit an exceptional combination of strength and ductility and show great promise for structural applications. Understanding the relationships between temperature, stacking fault energy (SFE) and strain-hardening behavior is critical for alloying, design, and further optimization of these steels. The present study investigates the influence of temperature and SFE on the microstructural evolution to explain the deformation behavior and mechanical properties of an austenitic Fe-14Cr-16Mn-0.3C-0.3N alloy. The flow behavior is homogenous and no serrations in the flow stress occur during tensile deformation in the temperature range from -150 to 250 ℃. Mechanical twinning and the formation of (planar) dislocation substructures strongly influence the mechanical properties and work-hardening behavior in the intermediate temperature range from -40 to 45 ℃ (SFE range from 17 to 24 mJ m~(-2)). In the high temperature interval from 100 to 250 ℃ the SFE ranges from 29 to 44 mJ m~(-2) and the initiation of mechanical twinning is delayed leading to reduced work-hardening in the intermediate and final stages of strain-hardening. In the low temperature regime from -150 to 100 ℃ (SFE approximately 15 mJ m~(-2)), ε_(h.c.p.)-martensite is the dominant secondary deformation mechanism, contributing to the enhanced work-hardening in the early and intermediate stages of deformation and slightly lower total elongations. The yield strength of the studied alloy is significantly larger and exhibits greater sensitivity to temperature within the thermal and athermal ranges for dislocation motion compared to conventional Fe-Mn-(Al)-C TWIP or austenitic stainless steels, which may be attributed to phenomena such as short range ordering.
机译:最近开发的高锰不锈钢Fe-Cr-Mn-CN钢表现出强度和延展性的出色结合,并在结构应用中显示出巨大的希望。了解温度,堆垛层错能(SFE)和应变硬化行为之间的关系对于这些钢的合金化,设计和进一步优化至关重要。本研究调查温度和SFE对显微组织演变的影响,以解释奥氏体Fe-14Cr-16Mn-0.3C-0.3N合金的变形行为和力学性能。在-150至250℃的温度范围内,拉伸变形时的流动行为是均匀的,没有锯齿状的流动应力。机械孪晶和(平面)位错亚结构的形成在-40到45℃(SFE范围从17到24 mJ m〜(-2))的中间温度下强烈影响机械性能和加工硬化行为。在100至250℃的高温区间中,SFE的范围为29至44 mJ m〜(-2),机械孪晶的产生延迟了,从而在应变硬化的中间和最终阶段减少了加工硬化。在-150至100℃的低温条件下(SFE约为15 mJ m〜(-2)),ε_(hcp)-马氏体是主要的二次变形机制,有助于增强早期和中期的加工硬化变形和总伸长率略低。与传统的Fe-Mn-(Al)-C TWIP或奥氏体不锈钢相比,所研究合金的屈服强度明显更大,并且在热和非热范围内对位错运动表现出更高的温度敏感性,这可能归因于这种现象。作为短程订购。

著录项

  • 来源
    《Materials Science and Engineering》 |2015年第26期|71-83|共13页
  • 作者单位

    Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen, Germany;

    Advanced Steel Processing and Products Research Center, Colorado School of Mines, CO 80401, USA,Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232, USA;

    Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany;

    Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany;

    Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany;

    Department of Ferrous Metallurgy, RWTH Aachen University, 52072 Aachen, Germany;

    Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Austenitic stainless steels; Stacking fault energy; Twinning; Strain hardening; EBSD; Electron microscopy;

    机译:奥氏体不锈钢;堆积故障能量;孪生;应变硬化;EBSD;电子显微镜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号