首页> 外文期刊>Materials Focus >Light, Einstein Relation, Quantization and the Heavily Doped Opto-Electronic Materials
【24h】

Light, Einstein Relation, Quantization and the Heavily Doped Opto-Electronic Materials

机译:光,爱因斯坦关系,量子化和重掺杂光电材料

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we study the Einstein relation (ER) in heavily doped (HD) quantum confined opto-electronic materials on the basis of newly formulated electron dispersion law within the framework of k·p method in the presence of intense light waves which changes the dispersion relation fundamentally from real to complex one due to the existence of the poles in the finite complex plane of the corresponding electron energy spectrum in accordance with the three band model of Kane in the absence of band tails. Taking heavily doped n-InAs and n-InSb as examples of Ⅲ-Ⅴ compounds, n-Hg_(1-x)Cd_xTe and n-In_(1-x)Ga_xAs_yP_(1-y) lattice matched to InP as examples of HD ternary and quaternary materials we observe that under magnetic quantization the ER oscillates with inverse quantizing magnetic field due to Shubnikov-de Haas effect. The ER also decreases with increasing light intensity and wavelengths in different manners which are band structure dependent. Under cross fields configuration, the ER increases with increasing electric field and in quantum wells ER increases with increasing concentration, decreasing intensity and wavelengths respectively. The numerical values are different in different cases because of the signature of the quantization of the wave vector space due to quantizing magnetic field, cross field configuration and size confinements respectively. The ER decreases with increasing alloy composition in all the cases and we have suggested an experimental method of determining the ER for HD materials. Besides we have investigated the effective electron mass (EEM) and sub-band energy as a collateral study. The EEM exists in the forbidden zone, which is impossible without the effect of band tailing. In the absence of band tails, the effective mass in the band gap of semiconductors is infinity. Under certain limiting conditions all the results get transformed into the well-known formula of ER as derived for the first time by Landsberg [P. T. Landsberg, Eur. J. Phys. 2, 213 (1981)] and thus confirming the compatibility test.
机译:本文在强光波的作用下,根据k·p方法框架内新制定的电子色散定律,研究了重掺杂(HD)量子受限光电材料中的爱因斯坦关系(ER)。由于在不存在带尾的情况下,根据Kane的三能带模型,在相应电子能谱的有限复平面中存在极点,因此色散关系基本上从实数到复数关系。以重掺杂的n-InAs和n-InSb为Ⅲ-Ⅴ族化合物的例子,与InP匹配的n-Hg_(1-x)Cd_xTe和n-In_(1-x)Ga_xAs_yP_(1-y)晶格为HD的例子。三元和四元材料我们观察到,由于Shubnikov-de Haas效应,在磁量化下ER以逆量化磁场振荡。 ER也以不同的方式随带结构而定,随着光强度和波长的增加而减小。在交叉场配置下,ER随电场的增加而增加,而在量子阱中,ER随浓度的增加,强度和波长的减小而增加。数值在不同情况下是不同的,这是由于分别由于量化磁场,交叉场构造和尺寸限制而引起的波矢量空间的量化的特征。在所有情况下,ER均随合金成分的增加而降低,我们建议了一种确定HD材料ER的实验方法。此外,作为辅助研究,我们还研究了有效电子质量(EEM)和子带能量。 EEM存在于禁区,如果没有带拖尾效应,这是不可能的。在没有带尾的情况下,半导体带隙中的有效质量为无穷大。在一定的限制条件下,所有结果都转化为Landsberg首次推导的众所周知的ER公式[P. T. Landsberg,欧洲。 J.物理2,213(1981)],从而确认了兼容性测试。

著录项

  • 来源
    《Materials Focus》 |2015年第2期|85-110|共26页
  • 作者单位

    Department of Basic Science and Humanities, Institute of Engineering and Management, Salt Lake Sector Ⅴ, Kolkata 700091, India;

    Department of Electronics and Communication Engineering, National Institute of Technology Manipur, Imphal 795001, India;

    Department of Electronics and Communication Engineering, National Institute of Technology, Agartala, Tripura 799055, India;

    Department of Computer Science and Engineering, National Institute of Technology, Agartala, Tripura 799055, India;

    Department of Physics, Women's College, Agartala, Tripura 799001, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Light; Einstein Relation; Heavy Doping; Optoelectronics Materials; Effective Electron Mass; Sub-Band Energy;

    机译:光;爱因斯坦关系重掺杂;光电材料;有效电子质量子带能量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号