首页> 外文期刊>Marine Chemistry >Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea
【24h】

Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea

机译:地中海沿岸和海洋表层水中的汞甲基化,去甲基化和还原率

获取原文
获取原文并翻译 | 示例
           

摘要

In situ experiments using isotopically labeled mercury species (~199Hg(Ⅱ) and Me~201(Hg) are used to investigate mercury transformation mechanisms, such as methylation, demethylation and reduction, in coastal and marine surface waters of the Mediterranean Sea. The aim of this work is to assess the relative contribution of photochemical versus biological processes to Hg transformation mechanisms. For this purpose, potential transformation rates measured under diurnal and dark incubation conditions are compared with major biogeochemical parameters (i.e. hydrological and biological data) in order to obtain the relative contribution of various biotic and abiotic mechanisms in both surface (high light) and bottom (low light) waters of the euphoric zone. The results demonstrate that coastal and marine euphoric zones are significant reactors for all Hg transformations investigated (i.e. methylation, demethylation, reduction). A major outcome demonstrates that Hg methylation is taking place in oxic surface seawater (0.3-6.3% day~(-1)) and is mainly influenced by pelagic microorganism abundance and activities (phyto- and bacterioplankton). This evidences a new potential MeHg source in the marine water column, especially in oligotrophic deep-sea basins in which biogeochemistry is mostly governed by heterotrophic activity. For coastal and marine surface waters, although MeHg is mainly photochemically degraded (6.4-24.5% day~(-1), demethylation yields observed under dark condition may be attributed to microbial or chemical pathways (2.8-10.9% day~(-1)). Photoreduction and photochemical reactions are the major mechanisms involved in DGM production for surface waters (3.2-16.9% day~(-1)) but bacterial or phytoplanktonic reduction of Hg (Ⅱ) cannot be excluded deeper in the euphotic zone (2.2-12.3% day~(-1)). At the bottom of the euphotic zone, photochemical processes are thus avoided due to the attenuation of UV-visible sunlight radiation allowing biotic processes to be the most significant. These results suggest a new potential route for Hg species cycling in surface seawater and especially at the maximum biomass depth located at the bottom of the euphotic zone (i.e. maximum chlorophyll fluorescence). In this environment, DGM production and demethylation mechanisms are thus probably reduced whereas Hg methylation is enhanced by autotrophic and heterotrophic processes. Experimental results on mercury species uptake during these investigations further evidenced the strong affinity of MeHg for biogenic particles (i.e. microorganisms) that correspond to the first trophic level of the pelagic food web.
机译:利用同位素标记的汞物种(〜199Hg(Ⅱ)和Me〜201(Hg))进行原位实验,研究了地中海沿岸和海洋表层水域中汞的转化机理,如甲基化,去甲基化和还原。这项工作的目的是评估光化学过程和生物过程对汞转化机制的相对贡献,为此,将在昼夜孵育条件下测得的潜在转化率与主要生物地球化学参数(即水文和生物学数据)进行比较,欣快带的地表(高光)和海底(低光)水域中各种生物和非生物机制的相对贡献结果表明,沿海和海洋欣快带是研究的所有汞转化(即甲基化,脱甲基化)的重要反应器,还原)。主要结果表明,汞甲基化发生在有氧地表海水(0.3-6.3%day〜(-1)),主要受上层微生物的丰度和活动(浮游植物和浮游细菌)的影响。这证明了海洋水柱中新的潜在的甲基汞来源,特别是在富营养深海盆地中,那里的生物地球化学主要由异养活动控制。对于沿海和海洋地表水,尽管MeHg主要是光化学降解的(6.4-24.5%day〜(-1),但在黑暗条件下观察到的去甲基化产量可能归因于微生物或化学途径(2.8-10.9%day〜(-1) )。光还原和光化学反应是地表水DGM产生的主要机理(3.2-16.9%day〜(-1)),但不能在富营养区更深处排除Hg(Ⅱ)的细菌或浮游植物还原(2.2- 12.3%day〜(-1))。由于处于紫外光下的日光辐射衰减,使生物过程成为最重要的过程,因此在富营养区的底部避免了光化学过程,这些结果表明了新的潜在途径汞物种在地表海水中循环,尤其是在常绿区底部最大的生物量深度处(即最大的叶绿素荧光),因此在这种环境下,DGM的产生和去甲基化机制可能会减少,而汞的甲基化自养和异养过程增强了这种关系。在这些调查中,有关汞物种吸收的实验结果进一步证明了MeHg对与中上层食物网的第一个营养级相对应的生物颗粒(即微生物)具有很强的亲和力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号