...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets
【24h】

A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

机译:一种用于遥感测量硅酸盐熔岩喷发温度的新技术:应用于Io和其他行星

获取原文
获取原文并翻译 | 示例
           

摘要

The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 mu m are sufficient for this purpose. Even with a ten-way beam split, instrument throughput generates acceptable signal-to-noise values. Accurate constraints on lava eruption temperature are also possible with a visible wavelength detector so long as data at different wavelengths are obtained simultaneously and integration time is very short. Fast integration times are important for examining the thermal emission from lava tube skylights due to rapidly changing viewing geometry during close flybys. The technology described here is applicable to instruments observing terrestrial volcanism and for investigating proposed volcanic activity on Venus, where lava composition is not known. (C) 2017 Elsevier B.V. All rights reserved.
机译:不断演变的火山喷发产生的高度可变且不可预测的热辐射量,给观测地球和木星高度火山的卫星Io上的喷发的遥感仪器造成了饱和问题。对于Io,期望确定喷发熔岩的温度,因为该测量结果限制了熔岩成分。确定熔岩喷出温度的一种方法是通过测量两个或多个波长的辐射通量并拟合黑体热发射函数。仅某些类型的火山活动适合,那些可检测到的热辐射来自接近喷发温度的有限地表温度范围的火山活动。发生这种情况的火山过程包括大型熔岩喷泉。活跃在熔岩湖中的较小的熔岩喷泉;和熔岩管天窗。获得可用数据必须克服的问题是:(1)在不同波长的数据采集之间熔岩的快速冷却;(2)未知的热辐射幅度,通常导致检测器饱和;以及(3)热发射变化的时间尺度比观测积分时间短。我们可以通过使用HOT BIRD检测器和新颖的高级数字读出电路(D-ROIC)来克服这些问题,以实现足以在Io上成像熔岩而不会饱和的宽动态范围。我们创建了一个仪器模型,可以测试各种仪器参数(包括反射镜直径,信号分裂数,曝光持续时间,滤光片通带和光学透射率),以确定Io表面上热源的可检测性。我们发现,在Io飞越任务中使用短波红外仪器可以通过将所有相关喷发过程的输入信号进行分割来实现观测的同时性,并且仍能以足够快的速度获得数据,以消除在准确确定最高熔岩表面温度时的不确定性。为此目的,在1和1.5微米处观察即可。即使采用十向分束,仪器的通量也会产生可接受的信噪比值。只要能同时获得不同波长的数据并且积分时间非常短,用可见光波长检测器对熔岩喷出温度的精确约束也是可能的。快速的积分时间对于检查熔岩管天窗的热辐射非常重要,因为在近距离飞越过程中观察几何形状会快速变化。此处描述的技术适用于观测地面火山活动的仪器,以及用于调查火山岩成分未知的金星上拟议的火山活动的仪器。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号