首页> 外文期刊>Journal of Vacuum Science & Technology >4Investigation of surface and subsurface damage in diamond grinding of optical glass using hybrid copper-resin-bonded diamond wheel
【24h】

4Investigation of surface and subsurface damage in diamond grinding of optical glass using hybrid copper-resin-bonded diamond wheel

机译:4使用混合铜-树脂结合金刚石砂轮研究光学玻璃的金刚石磨削中的表面和亚表面损伤

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid metal-resin-bonded diamond wheel has more advantages for ultraprecision machining of optical glass than the usually used resin- or metal-bonded diamond grinding wheel. In this article, the grinding performance is investigated using the copper-resin-bonded 5-μm-grain-sized diamond wheel via contour grinding assisted with electrolytic in-process dressing. The surface roughness and figure accuracy were measured with an atomic force microscope (AFM) and Taylor-Hobson profilometer, respectively. The subsurface damage was first evaluated by a new method presented in this article, which was realized via observing the subsurface damage by AFM along the magnetorheological finishing polished groove surface. Then a common method was used for measuring the subsurface-damage depth and observing subsurface cracks, which can also prove the feasibility in evaluating the subsurface damage of the new method. Furthermore, the energy-spectrum analysis was used to evaluate the surface and subsurface by an x-ray energy spectrometer. The experimental results show that the ground workpiece (optical glass BK7) with surface roughness of 6-30 nm and subsurface-damage depth of less than 2.2 μm was generated with the hybrid-bonded diamond grinding wheel. The grinding process introduces the carbide element as an impurity into the surface and subsurface. The results indicate that a copper-resin-bonded diamond wheel can generate surface and subsurface integrities of optical glass with high quality.
机译:与通常使用的树脂或金属粘结的金刚石砂轮相比,混合金属树脂粘结的金刚石砂轮在光学玻璃的超精密加工中具有更多的优势。在本文中,使用铜树脂结合的5μm晶粒尺寸的金刚石砂轮,通过轮廓磨削和电解加工修整,研究了磨削性能。表面粗糙度和图形精度分别用原子力显微镜(AFM)和Taylor-Hobson轮廓仪测量。首先通过本文介绍的一种新方法对表面损伤进行评估,这是通过沿磁流变精加工抛光槽表面观察AFM观察表面损伤来实现的。然后采用一种常用的方法来测量地下破坏深度和观察地下裂缝,这也证明了该方法在评估地下破坏的可行性。此外,使用能量谱分析通过X射线能谱仪评估表面和亚表面。实验结果表明,用金刚石结合砂轮产生了表面粗糙度为6-30 nm,表面损伤深度小于2.2μm的磨削工件(光学玻璃BK7)。研磨过程将碳化物元素作为杂质引入表面和亚表面。结果表明,铜-树脂结合的金刚石砂轮可以产生高质量的光学玻璃表面和亚表面完整性。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2009年第3期|1489-1495|共7页
  • 作者单位

    Center for Precision Engineering (CPE), Harbin Institute of Technology, Harbin 86-150001, China;

    Center for Precision Engineering (CPE), Harbin Institute of Technology, Harbin 86-150001, China;

    Shanghai Machine Tool Works Ltd., Shanghai 86-200093, China;

    Shanghai Machine Tool Works Ltd., Shanghai 86-200093, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号