...
首页> 外文期刊>Journal of turbomachinery >Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
【24h】

Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow

机译:轮辋密封吹扫流对涡轮轮毂腔模式的调节和径向迁移

获取原文
获取原文并翻译 | 示例
           

摘要

In the present paper, the results of an experimental and numerical investigation of the hub cavity modes and their migration into the main annulus flow are presented. A one-and-a-half stage, unshrouded and highly loaded axial turbine configuration with three-dimensionally shaped blades and cylindrical end walls has been tested in an axial turbine facility. Both the blade design and the rim seal purge flow path are representative to modern high-pressure gas turbines. The unsteady flow field at the hub cavity exit region has been measured with the fast-response aerodynamic probe (FRAP) for two different rim seal purge flow rates. Furthermore, fast-response wall-mounted pressure transducers have been installed inside the cavity. Unsteady full-annular computational fluid dynamics (CFD) simulations have been employed in order to complement the experimental work. The time-resolved pressure measurements inside the hub cavity reveal clear cavity modes, which show a strong dependency on the injected amount of rim seal purge flow. The numerical predictions provide information on the origin of these modes and relate them to pronounced ingestion spots around the circumference. The unsteady probe measurements at the rim seal interface show that the signature of the hub cavity induced modes migrates into the main annulus flow up to 30% blade span. Based on that, an aerodynamic loss mechanism has been found, showing that the benefit in loss reduction by decreasing the rim seal purge flow rate is weakened by the presence of turbine hub cavity modes.
机译:在本文中,对轮毂腔模式及其向主环流的迁移进行了实验和数值研究。在轴流式涡轮机设备中测试了一个半级,无罩且高负荷的轴流式涡轮机配置,该结构具有三维形状的叶片和圆柱形端壁。叶片设计和轮辋密封件吹扫流动路径都代表了现代高压燃气轮机。对于两个不同的轮辋密封件吹扫流速,已使用快速响应空气动力学探针(FRAP)测量了轮毂腔出口区域的不稳定流场。此外,在腔体内已安装了快速响应的壁挂式压力传感器。为了补充实验工作,已经采用了非稳态全环形计算流体动力学(CFD)模拟。轮毂腔内部的时间分辨压力测量结果显示出清晰的腔模式,这显示了对轮辋密封件吹扫流量的注入量的强烈依赖性。数值预测提供了有关这些模式起源的信息,并将它们与周围的明显摄入点相关联。轮缘密封界面处的非定常探针测量结果表明,轮毂腔诱导模式的特征迁移到主环流中,直至叶片跨度达30%。基于此,发现了一种空气动力学损失机理,表明通过降低轮毂密封件吹扫流量而降低损失的益处因涡轮毂腔模式的存在而减弱。

著录项

  • 来源
    《Journal of turbomachinery》 |2017年第1期|011011.1-011011.10|共10页
  • 作者单位

    Laboratory for Energy Conversion, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland;

    Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece;

    Laboratory for Energy Conversion, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland;

    Siemens AG, Mellinghofer Str. 55, Muelheim an der Ruhr D-45473, Germany;

    Siemens AG, Mellinghofer Str. 55, Muelheim an der Ruhr D-45473, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号