首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Thermally Developing Electroosmotic Convection in Rectangular Microchannels with Vanishing Debye-Layer Thickness
【24h】

Thermally Developing Electroosmotic Convection in Rectangular Microchannels with Vanishing Debye-Layer Thickness

机译:具有逐渐消失的德拜层厚度的矩形微通道中的热渗透电对流

获取原文
获取原文并翻译 | 示例
       

摘要

Thermally developing electroosmotically generated flow in rectangular ducts has been analyzed for the constant-wall-temperature boundary condition. In such flow, fluid motion is induced not by an applied pressure gradient, but by an applied electric potential. For fluid-tube-material combinations that yield a Debye layer of vanishing thickness, the velocity distribution is essentially uniform across the duct cross section. In addition, the applied potential gradient induces an electrical current that results in volumetric heating in the fluid. An analytical solution to the hydrodynamically developed, thermally developing transport for such a flow is presented in this paper. The effect of variations in the duct aspect ratio, the relative magnitude of the volumetric generation, and the Peclet number on the thermal transport are explored over the possible ranges of these parameters. The solution reveals a local minimum in the streamwise variation of the local perimeter-averaged Nusselt number for moderate, positive values of tbe dimensionless duct inlet fluid temperature. For negative inlet temperatures, the fluid is initially heated and then cooled, creating a singularity in the local, perimeter-averaged Nusselt number at this transition. Far downstream, heat transport approaches constant-wall-heat-flux conditions for both positive and negative inlet temperatures. The fully developed Nusselt number decreases from a maximum for the parallel-plate configuration to a minimum for the square duct. Electroosmotically generated flow exhibits considerably longer thermal-entry regions than pressure-driven flow, and the development length is observed to be a function of Peclet number, dimensionless inlet temperature, and channel aspect ratio.
机译:对于恒定壁温边界条件,已经分析了矩形管道中热电渗流产生的流动。在这种流动中,流体运动不是由施加的压力梯度引起的,而是由施加的电势引起的。对于产生厚度逐渐消失的德拜层的流体管材料组合而言,整个管道横截面的速度分布基本均匀。另外,所施加的电势梯度感应出电流,该电流导致流体中的体积加热。本文提出了针对这种流动的水力开发,热力开发运输的解析解决方案。在这些参数的可能范围内,研究了风管纵横比,体积生成量的相对大小以及Peclet数变化对热传递的影响。对于无量纲的导管入口流体温度适度的正值,该解决方案揭示了局部周长平均Nusselt值在流向变化中的局部最小值。对于负的入口温度,首先对流体进行加热,然后冷却,从而在此过渡过程中在局部的平均Nusselt数上产生奇异性。在下游,对于正负入口温度,传热都接近恒定壁热通量条件。完全展开的努塞尔数从平行板配置的最大值减少到方管的最小值。电渗流比压力驱动流具有更长的热进入区域,并且观察到的发展长度是佩克列数,无量纲入口温度和通道长宽比的函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号