首页> 外文期刊>Journal of thermal stresses >Monitoring of transient 3D temperature distribution and thermal stress in pressure elements based on the wall temperature measurement
【24h】

Monitoring of transient 3D temperature distribution and thermal stress in pressure elements based on the wall temperature measurement

机译:基于壁温测量监控瞬态3D温度分布和压力元件中的热应力

获取原文
获取原文并翻译 | 示例
           

摘要

Two methods for monitoring the thermal stresses in pressure components of thermal power plants are presented. In the first method, the transient temperature distribution in the pressure component is determined by measuring the transient wall temperature at several points located on the outer insulated surface of the component. The transient temperature distribution in the pressure component, including the temperature of the inner surface is determined from the solution of the inverse heat conduction problem (IHCP). In the first method, there is no need to know the temperature of the fluid and the heat transfer coefficient. In the second method, thermal stresses in a pressure component with a complicated shape are computed using the finite element method (FEM) based on experimentally estimated fluid temperature and known heat transfer coefficient. A new thermometer with good dynamic properties has been developed and applied in practice, providing a much more accurate measurement of the temperature of the flowing fluid in comparison with standard thermometers. The heat transfer coefficient on the inner surface of a pressure element can be determined from the empirical relationships available in the literature. A numerical-experimental method of determination of the transient heat transfer coefficient based on the solution of the 3D-inverse heat conduction problem has also been proposed. The heat transfer coefficient on the internal surface of a pressure element is determined based on an experimentally determined local transient temperature distribution on the external surface of the element or the basis of wall temperature measurement at six points located near the internal surface if fluid temperature changes are fast. Examples of determining thermal and pressure stresses in the thick-walled horizontal superheater header and the horizontal header of the steam cooler in a power boiler with the use of real measurement data are presented.
机译:提出了两种监测火力发电厂压力分量热应力的方法。在第一种方法中,通过测量位于组件外部隔热表面上几个点的瞬态壁温来确定压力组件中的瞬态温度分布。压力分量中的瞬态温度分布(包括内表面的温度)由逆导热问题(IHCP)的解决方案确定。在第一种方法中,不需要知道流体的温度和传热系数。在第二种方法中,根据实验估算的流体温度和已知的传热系数,使用有限元方法(FEM)计算形状复杂的压力分量中的热应力。已经开发出一种具有良好动态特性的新型温度计,并在实践中得到了应用,与标准温度计相比,该温度计可以更精确地测量流动流体的温度。压力元件内表面上的传热系数可以根据文献中的经验关系来确定。还提出了一种基于3D逆导热问题求解的瞬态传热系数确定的数值实验方法。压力元件内表面的传热系数是根据实验确定的元件外表面上的局部瞬态温度分布或流体温度变化引起的位于内表面附近六个点处的壁温测量结果确定的快速。给出了使用实际测量数据确定动力锅炉中厚壁水平过热器集管和蒸汽冷却器的水平集管中的热应力和压力应力的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号